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ROS; what are they and where are they coming from?



Two most important reactions to our existence and survival:
%0, + 2H* + 2e" > H,0 AG°=-37.8 kcal/mol (+0.82 V)

O, +e 2>

AG° = +3.45 kcal/mol (-0.15 V)
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Enzymatic (four electrons) and non-enzymatic (one electron)
reductions of O, as a function of oxygen concentration. Oxygen
availability in the range between the two dashed vertical lines
are optimum for maximum physiological performance with
least superoxide formation.




ROS; what are they?
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ROS; where are they coming from?
Aging is viewed as a state of increased chronic inflammation!

The mitochondria theory of Aging




ROS; where are they coming from?
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Conclusion so far:
Mitochondrial ROS are major players

In the aging process.

Solutions!?
Antioxidants = total failure
Unconventional antioxidants .....



Free radical “sponge”™
Adds > 30 radicals/C,!

Water-soluble C,



Extension of the life-span of SOD2 knock-out mice.
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Ali et al. (2004) Free Radical Biology and Medicine
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affinity for a nucleophile

C; + 0, + H,0, + 2HO




Start Treatment
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Quick, Ali et al. (2008) Neurobiology of Aging



All is good!?
However ....



Female Survival Male Survival
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background EPR signal

| Although cellular ROS

Young W level is increased,

320 3440 3460 3480 3500 3520 mitochondria are not
agnetlc elqa,
fully responsible!!
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MtDNA mutations accumulate in natural aging potentially as a result of free radical-induced
oxidative damage or during replication, the latter being
particularly important in the D257A mice.

D257A mouse: knockin mutation that
Inactivates the proofreading function of
mitochondrial DNA polymerase v.

mtDNA Replication — mtDNA Mutations
Errors

No signs for increased mitochondrial
oxidative stress in D257A mice.

Oxidative Stress

Activation of
Apoptosis

Loss of
Irreplaceable Cells

D257A mouse Tlssui [‘)\\;:‘ugnctlon

Kujoth G C et al. Cancer Res 2006;66:7386-7389



If mitochondria are the main
sources of ROS, what is it?!



Mitochondria are not the major ROS source!
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Dugan, Behrens, and Ali, Oxidative Stress in Hypoxic-Ischemic Brain Injury 2009
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Known 3-Types of NADPH oxidases

NOX2 (gp91rhox) family.
« Almost identical in size and
structure.
* The enzymes differ in their
regulatory factors.
* NOX1: Colon and vascular
smooth muscle.
* NOX2 : Phagocytes.
* NOXS3 : Fetal Kidney.
* NOX4 : Widespread; e.g. kidney,
ovary, eye, etc.

91 phox
I?J%K *P Separate
MNOX3 peroxidase
MNOX4a

Haem
cdomain

clomain

(such as MPO)

NOXS5 builds on the basic
structure of gp91rhox adding an
amino terminal calcium binding
unit.

* The Ca binding exposes the
hydrophobic domains that bind to
and regulate the activity of NOX5.

* NOX5 : Spleen, sperm, mammary
glands, and cerebrum.

Calciume-
Dinding domain

DUOX enzyme family further
extends the NOS5 structure by
adapting a peroxidase domain on
the extracellular face of the plasma
membrane.

* It appears that the dual, and
paradoxically contrasting functions
of DUOX enzymes is to oxidize an
extracellular co-substrate such as
extracellular matrix proteins.

« DUOX : Colon, pancreatic islets
and prostate

DUOX1
DUOX2

Peroxidase
domain

Lambeth, Nature Reviews 2004



Activation of phagocytic NOX

Microorganisms and
inflammatory mediators

p22phox
RN Cell activation
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* The flavocytochrome b558 is inactive in unstimulated phagocytes, but becomes activated
after exposure of cells to microorganisms or inflammatory mediators as a result of assembly of
cytosolic components.

» Exposure of cells to microorganisms or inflammatory mediators initiates three molecular
triggers: Protein phosphorylation, lipid metabolism, and guanine-nucleotide exchange.

-« NOX4 is constitutively active and may not require subunits for further activation.
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Synaptosomes as neuronal model




Techniques to study metabolism and ROS

The WPI ROS analyzer
Real-time detection of:

* H,0,
e ATP
. 0, EPR

* NO


http://www.wpiinc.com/products/biosensing/apollo/A1-dump.jpg
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. The hydrogen peroxide production by synaptosomal NOX didn’t
significantly differ between the two experimental approaches.

38.85 % of oxygen consumed by synaptic NOX is converted to hydrogen
peroxide.



1. 10-uM VAS-2870 inhibited ~50%
of NADPH-induced activity
whether recorded as oxygen

NADPH  Vas-2870  Enselon consumption or as H,0,
production.

2. Meanwhile, 10 uM ebselen
quenched ~75% of NADPH-

e induced oxygen consumption

T et while completely reversing

- H202 signal

O, flux (uM/sec)

H,O, flux (uM/sec)




Synaptic NOX vs. Synaptic mitochondria
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NADPH oxidases are minor oxygen
consumers but major hydrogen peroxide

producers in synaptosomes
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Challenges for Evaluation of Experimental Protocols

* Fluorescence background and residual oxygen consumption due to NAD(P)H
interaction with the HRP/Amplex Red.

* Inthe absence of added synaptosomes, the addition of NADPH alone in our
AR/HRP assay resulted in enhanced fluorescence as well as oxygen consumption.

Solution:

* Reduce NADPH concentration from 5 mM to 200 uM!

1:06
Range [h:min]: 1:20

amed 200umnadph 200umnadph 200umnadph

10um ebs

This increase in background fluorescence was far less than the resorufin fluorescence
detected in the presence of synaptosomes.



Challenges for Evaluation of Experimental
Protocols

e Fast consumption the Amplex Red dye in the presence of
NADPH.

Range [h:min]: 1:00

hep red 200umnadph 200umnadph 200umnadph



Solution:
* Replace Amplex Red with Amplex Ultra Red dye.
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1. Ebselen quenched ~75% of
NADPH-induced oxygen
consumption while completely
reversing H202 signal = in tune
with reports showing that
EBSELEN EXHIBITS glutathione
peroxidase activity

O, flux (uM/sec)

NADPH Vas-2870 Ebselen

Ebselen

NADPH Vas-2870

Solution: Use VAS-2870 to confirm

L | g
NOX-related activity.
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