

UiO School of Pharmacy University of Oslo

Mouse skeletal muscle cells available

- > AMPKα2 knockout (KO) (A/J and B6/J mice)
- ➢ Plin2 KO
- > LXRα, LXRβ KO
- > Plin2,3 doKO

UiO School of Pharmacy University of Oslo

"Fuel handling" methods

- Method 1. Scintillation proximity assay (SPA) for real-time measurement of influx or efflux of βemitting energy substrates non-invasively in 96well plates
- Method 2. 96-well "plate press" method for capture and quantification of ¹⁴CO₂ released from cultured cells
- ➤ Method 1 and 2 combined

Additional measurements

- Cell-associated radioactivity (substrate accumulation)
- Total cellular lipids (by filtration) + lipid distribution (by TLC)
- > Lipolysis and re-esterification (SPA)
- > Fatty acid β-oxidation (acid soluble metabolites)
- ➤ Glycogen synthesis ± insulin
- ➤ Lactate (glycolysis)

UiO School of Pharmacy University of Oslo

Outcomes

- The scintillation proximity assay (SPA) and trapping of ¹⁴CO₂ in 96-well sealed microfilter plates can be successfully applied on different cell cultures as demonstrated in human myotubes, adipocytes and hepatocytes (HepG2 cells)
- Both methods are adaptable for medium to high capacity screening of compound collections, and at the same time provide easy-to-use and time saving research tools for in vitro studies of cellular nutrient handling
- The fuel handling technology extends transcriptome, genome or proteome analysis as it provides a functional, and therefore crucial, readout for changes that might have been revealed by 'omics' analysis but whose relevance for human physiology is uncertain