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Summary 
 

The prevailing notion that reduced cofactors NADH 
and FADH2 transfer electrons from the tricarboxylic 
acid cycle to the mitochondrial electron transfer 
system creates ambiguities regarding respiratory 
Complex II (CII). The succinate dehydrogenase 
subunit SDHA of CII oxidizes succinate and reduces the 
covalently bound prosthetic group FAD to FADH2 in 
the canonical forward tricarboxylic acid cycle. 
However, several graphical representations of the 
electron transfer system depict FADH2 in the 
mitochondrial matrix to be oxidized by CII. This leads 
to the false conclusion that FADH2 from the β-
oxidation cycle in fatty acid oxidation feeds electrons 
into CII. In reality, dehydrogenases of fatty acid 
oxidation channel electrons to the coenzyme Q-
junction but not through CII. The ambiguities 
surrounding Complex II in the literature and 
educational resources call for quality control, to 
secure scientific standards in current 
communications of bioenergetics, and ultimately 
support adequate clinical applications. This review 
aims to raise awareness of the inherent ambiguity 
crisis, complementing efforts to address the well-
acknowledged issues of credibility and 
reproducibility. 

  

1. Introduction 
 

 Current studies on cellular and mitochondrial bioenergetics sparked a new interest 
in the tricarboxylic acid (TCA) cycle ― the citric acid cycle or Krebs cycle (Krebs, Eggleston 
1940; Gnaiger et al 2020; Bénit et al 2022; Arnold, Finley 2023). TCA cycle metabolites 
are oxidized while reducing NAD+ to NADH+H+ in the forward cycle, or are transported 
into the cytosol (Murphy, O'Neill 2018). Respiratory Complex II (CII, succinate 
dehydrogenase SDH; succinate-ubiquinone oxidoreductase; EC 1.3.5.1) has a unique 
position in both the TCA cycle and the mitochondrial membrane-bound H+-linked electron 
transfer system (membrane-ETS). All genes for CII are nuclear encoded, with exceptions 
in red algae and land plants (Huang et al 2019; Moosavi et al 2019). Succinate:quinone 
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oxidoreductases (SQRs, succinate dehydrogenases SDH) favour oxidation of succinate and 
reduction of quinone in the canonical forward direction of the TCA cycle and electron 
transfer into the Q-junction (Cecchini 2003). Operating in the reverse direction, 
quinol:fumarate reductases (QFRs, fumarate reductases, FRD) reduce fumarate and 
oxidize quinol (Iverson 2013; Maklashina et al 2022). The reversed TCA cycle has gained 
interest in studies ranging from metabolism in anaerobic animals (Hochachka, Somero 
2002), thermodynamic efficiency of anaerobic and aerobic ATP production (Gnaiger 
1993), reversed electron transfer and production of reactive oxygen species (Tretter et al 
2016; Robb et al 2018; Spinelli et al 2021), hypoxia and ischemia-reperfusion injury 
(Couchani et al 2014), to evolution of metabolic pathways (Lane 2022). In cancer tissue 
CII plays a key role in metabolic remodeling (DeBerardinis, Chandel 2016; Schöpf et al 
2020). Beyond its role in electron transfer in the TCA cycle and the membrane-ETS, CII 
serves multiple functions in metabolic signaling (Iverson et al 2023). 
 

 The coenzyme NAD+ is reduced to NADH+H+ during the oxidation of pyruvate and 
through redox reactions catalyzed by TCA cycle dehydrogenases (DH) including isocitrate 
DH, oxoglutarate (α-ketoglutarate) DH, and malate DH. In turn, coenzyme NADH is the 
substrate for the oxidation reaction catalyzed by CI which is linked to reduction of the 
prosthetic group FMN to FMNH2. Likewise, the prosthetic group FAD is reduced to FADH2 
during oxidation of succinate by succinate DH (CII; footnotes on terminology: Supplement 
1). Confusion emerges, however, when NADH and FADH2 are considered as the reduced 
cofactors feeding electrons from the TCA cycle into the ‘respiratory chain’ ― rather than 
NADH and succinate (Gnaiger 2020). This ‘Complex II ambiguitiy’ has deeply penetrated 
the scientific literature on bioenergetics without sufficient quality control. Therefore, a 
critical literature survey is needed to draw attention to widespread ambiguities, 
particularly in graphical representations of the mitochondrial electron transfer system, to 
ensure scientific standards in communications on bioenergetics. 
 

2. Electron flow through CI and CII to the coenzyme Q junction 
 

 The reduced flavin groups FMNH2 of flavin mononucleotide and FADH2 of flavin 
adenine dinucleotide are at functionally comparable levels in the electron transfer 
through CI and CII, respectively (Figure 1a,b). FMNH2 and FADH2 are reoxidized 
downstream in CI and CII, respectively, by electron transfer converging at the Q-junction. 
The convergent architecture of the electron transfer system (ETS; in contrast to a linear 
electron transfer chain) is emphasized in Figures 1c and 1d (Hatefi 1962; Gnaiger 2020). 
Comparable to CII, several additional respiratory Complexes are localized in the mtIM 
which catalyze electron transfer converging at the Q-junction, including electron 
transferring flavoprotein Complex (CETF) in fatty acid oxidation, glycerophosphate DH 
Complex (CGpDH), sulfide-ubiquinone oxidoreductase, choline DH, dihydro-orotate DH, 
and proline DH (Gnaiger 2020; Bénit et al 2022; Pallag et al 2022). 
 

 Complex II is a flavoprotein with a covalently bound flavin adenine dinucleotide as 
documented in early reports (Kearney 1960) and summarized in classical textbooks 
(Lehninger 1970; Tzagoloff 1982). Microscopic detail on the structure and function of CII 
has expanded our knowledge on the mechanism of enzyme assembly (Maklashina et al 
2022), enzyme structure (Vercellino, Sazanov 2022; Karavaeva, Sousa 2023), kinetic 
regulation of CII activity (Mills et al 2018; Fink et al 2022), and associated pathologies 
(Bénit et al 2022; Iverson et al 2023). 
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Figure 1. Complex II (SDH) 
bridges H+-linked electron 
transfer from the TCA cycle 
(matrix-ETS) to the 
electron transfer system 
(membrane-ETS) of the mt-
inner membrane (mtIM). 
(a) NADH+H+ and (b) 
succinate are substrates of 
2{H++e-} transfer to CI and 
CII, respectively, with 
prosthetic groups FMN and 
FAD as the corresponding 
electron acceptors. (c) 
Symbolic representation of 
ETS pathway architecture. 
Electron flow converges at 
the N-junction (NAD+ → 
NADH+H+). Electron flow 
from NADH and succinate S 
converges through CI and CII 
at the Q-junction. CIII passes 
electrons to cytochrome c and 
in CIV to molecular O2, 
2{H++e-}+0.5 O2 ⇢ H2O. (d) 
NADH+H+ and NAD+ cycle 
between matrix-
dehydrogenases and CI, 
whereas FAD and FADH2 
cycle permanently bound 
within the same enzyme CII. 

Succinate and fumarate indicate the chemical entities irrespective of ionization, but 
charges are shown in NADH, NAD+, and H+. Joint pairs of half-circular arrows distinguish 
electron transfer 2{H++e­} to CI and CII from vectorial H+ translocation across the mtIM 
(H+neg → H+pos). CI and CIII pump hydrogen ions from the negatively (neg) to the positively 
charged compartment (pos). (e) Iconic representation of SDH subunits. SDHA catalyzes 
the oxidation succinate → fumarate + 2{H++e-} and reduction FAD + 2{H++e-} → FADH2 in 
the soluble domain of CII. The iron–sulfur protein SDHB transfers electrons through Fe-S 
clusters to the mtIM domain where ubiquinone UQ is reduced to ubiquinol UQH2 in SDHC 
and SDHD.  
 

 H+-linked two-electron transfer from succinate to flavin adenoside dinucleotide FAD 
reduces the oxidized prosthetic group to FADH2 with formation of fumarate. This H+-
linked electron transfer through CII is not coupled to H+ translocation across the 
mitochondrial inner membrane (mtIM). Hence, CII is not a H+ pump in contrast to the 
respiratory Complexes CI, CIII and CIV through which electron transfer – more 
appropriately 2{H++e-} transfer (Table 1) – drives and maintains the protonmotive force.  
 



 

 
 
 

Complex II ambiguities 

4 Gnaiger (2023) MitoFit Preprints 2023.3.v5. 
 

 The reversible oxidoreduction of succinate and fumarate is catalyzed in the soluble 
domain of CII extending from the mtIM into the mt-matrix. Succinate donates electrons – 
i.e. two hydrogen ions and two electrons, 2{H++e−} – to FAD which is covalently bound to 
the subunit SDHA. SDHA contains the catalytically active dicarboxylate binding site where 
succinate is oxidized to fumarate. The oxidized yellow (450 nm) form FAD functions as 
hydrogen acceptor from succinate to the reduced internal product FADH2 while fumarate 
is formed as the oxidized external product in the TCA cycle. Like in most flavin-linked 
dehydrogenases, the flavin nucleotide is a prosthetic group which remains permanently 
bound to the enzyme during the catalytic cycle when the redox state is regenerated in 
each enzymatic turnover. FADH2 relays electrons further through a series of iron-sulfur 
redox centers in SDHB to ubiquinone in the membrane domain harboring SDHC and SDHD 
(Moosavi et al 2019) (Figure 1e).  
 

 Simple arrows (Figure 1a-c) or a pair of rounded arrows ‒ an external arrow 
touching the enzyme and an internal arrow within the enzyme ‒ indicate H+-linked 
electron transfer (Hsu et al 2022) in terms of 2{H++e−} (Figure 1d,e). Caution is warranted 
to distinguish three types of transformation with hydrogen ions (Table 1).  
 

Table 1. Three distinct types of transformation with hydrogen ions H+. 
 

Transformation Equation Type 
1. acid-base 

equilibrium 
H3O+ ↔ H2O + H+ (a) 
H2CO3 ↔ HCO3- + H+  (b) 

scalar, chemical 

2a. H+-linked 
electron transfer, 
oxidation 

Malate2- ⟶ Oxaloacetate2- + 2{H++e−} (c) 
Succinate2- ⟶ Fumarate2- + 2{H++e−} (d) 

scalar, chemical 

2b. H+-linked 
electron transfer, 
reduction 

2{H++e−} + NAD+ ⟶ NADH+H+ (e) 
2{H++e−} + E-FAD ⟶ E-FADH2 (f) 

scalar, chemical 

3. transport, 
translocation 

pumping: H+neg ⟶ H+pos (g) 
diffusion: H+pos ⟶ H+neg (h) 

vectorial, 
compartmental, 
transmembrane 

 
3. The source and consequence of Complex II ambiguities 
 

‘No representation is ever perfectly expressive, for if it were it would 
not be a representation but the thing itself’ (Grosholz 2007). 

 

 Ambiguities emerge if the representation of a concept is vague to an extent that 
allows for equivocal interpretations. As a consequence, even a basically clear concept 
(Figure 1) may be communicated as a divergence from an established ‘truth’. The 
comparison between NADH linked to CI and FADH2 (instead of succinate) linked to CII 
leads us astray, as illustrated by the following textbook-quotes (Cooper 2000) (Figure 2). 
 

 (1) 'Electrons from NADH enter the electron transport chain in complex I, .. A distinct 
protein complex (complex II), which consists of four polypeptides, receives electrons from the 
citric acid cycle intermediate, succinate (Figure 10.9). These electrons are transferred to 
FADH2, rather than to NADH, and then to coenzyme Q.'  
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 (2) 'In contrast to the transfer of electrons from NADH to coenzyme Q at complex I, the 
transfer of electrons from FADH2 to coenzyme Q is not associated with a significant decrease 
in free energy and, therefore, is not coupled to ATP synthesis.' Note that CI is in the path of 
electron transfer from NADH to coenzyme Q. In contrast, electron transfer from FADH2 to 
coenzyme Q is downstream of succinate oxidation by CII. Thus instead of the Gibbs force 
('decrease in free energy') in FADH2→Q potentially driving the coupled process of proton 
translocation through CII, the total Gibbs force (Gnaiger 2020) in S→FADH2→Q must be 
accounted for. (In parentheses: None of these steps are directly coupled to ATP synthesis. 
Redox-driven proton translocation must be distinguished from phosphorylation of ADP 
driven by the protonmotive force). 
 

 

Figure 2. Electron transfer to CI and CII. Zoom into figures of Cooper (2000). (a) The 
marked H+ is consumed in H+-linked electron transfer instead of being produced. (b) 
Marked quote inserted from the legend to Fig. 10.9. 
 

 (3) CII receives electrons from succinate, yet it is suggested that 'electrons from 
succinate enter the electron transport chain via FADH2 in complex II.' The ambiguity is 
caused by a lack of unequivocal definition of the electron transfer system (‘electron 
transport chain’; Supplement 1). Two contrasting definitions are implied of the 'electron 
transport chain' or ETS. (a) CII is part of the ETS. Hence electrons enter the ETS in the 
succinate branch from succinate but not from FADH2 – from the matrix-ETS to the 
membrane-ETS (Figure 1c,d). (b) If electrons enter the 'electron transport chain via FADH2 
in complex II', then subunit SDHA would be upstream and hence not part of the ETS (to 
which conclusion obviously nobody would agree). There remains the ambiguity of 
electron entry into CII from succinate (Figure 1) or from FADH2 as the ‘product’ of 
succinate dehydrogenase in the TCA cycle (Figure 3a,b). 

 
4. The FADH2 - FAD confusion in the succinate-pathway 
 

‘Like drops of water on stone, one drop will do no harm, but over time, 
grooves are cut deep‘ (Wardle 2023). 

 

 The narrative that the reduced cofactors NADH and FADH2 feed electrons from the 
TCA cycle into the mitochondrial electron transfer system causes confusion. As a 
consequence, the prosthetic group FADH2 appears erroneously as the substrate of CII in 
the ETS linked to succinate oxidation. This error is widely propagated in 99 publications 
found from 2001 to 2023 (Supplements 2 to 6) and numerous educational websites 
(Supplement 7). Clarification is required (Gnaiger 2020; page 48). The following examples 
illustrate the transition from ambiguity to misunderstanding. 
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Figure 3. Complex II ambiguities. (a) FADH2 depicted as product and substrate of 
Complex II by Arnold, Finley (2023), (b) Martínez-Reyes, Chandel (2020). NADH and 
NAD+ cycle between different types of enzymes (yellow circle), in contrast to the FADH2-
FAD cycle located within the same enzyme (SDH and CII are synonyms). (c) From 
ambiguity to (d) graphical misconception (Chandel 2021). (e) FADH2 shown as substrate 
of CII (Brownlee 2001). (f) FAD shown as product in the mt-matrix and inside CII (Read 
et al 2021). (g) Unjustified indication of 2H+ formation in the mt-matrix (Yin et al 2021), 
not trivial considering the concept of the protonmotive force. (h) FADH2 as substrate of 
CII and FADH (?) as product (Cadonic et al 2016). (i) The NADH→NAD+ analogy is taken 
to the level of copying a charge to FAD+ (Fisher-Wellman, Neufer 2012) or (j) FADH+ 
(Torres et al 2018). 
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(1) Ambiguities appear in graphical representations, where FADH2 is the product of 
SDH and the substrate of CII – synonymous with SDH (Figure 3a,b; Suppl Figure S2). 
 

(2) Ambiguity evolved to misconception in graphical representations (Figure 3c,d). 
 

(3) Graphical errors on electron entry from FADH2 into CII show up without comment 
(Figure 3e,f; Suppl Figures S3).  
 

(4) Instead of NADH+H+→NAD+ there appears NADH→NAD++H+ (or +2H+) and by 
analogy FADH2→FAD +2H+ (Figure 3g; Suppl Figure S4) or FADH2→FADH (Figure 3h). The 
analogy NADH→NAD+ is taken further to include a charge for FAD or even writing FADH+ 
(Figure 3i,j; Suppl Figures S5 and S6). Disturbing patterns are shown in various figures 
with analogous representations of oxidation of NADH and FADH2 (Table 2). 
 

 Finally, error propagation from graphical representation (Figure 3) leads to 
misconception in the text: 'SDH reduces FAD to FADH2, which donates its electrons to 
complex II'; 'each complete turn of the TCA cycle generates three NADH and one FADH2 
molecules, which donate their electrons to complex I and complex II, respectively'; 'complex 
I and complex II oxidize NADH and FADH2, respectively' (Arnold, Finley 2023). 
 

Table 2. Misconceptions in graphical representations of electron entry into CII. 
 

Analogy with NADH Suppl Figure FADH2 Suppl Figure 
NADH + H+ ⟶  NAD+     
NADH ⟶  NAD+ + H+ S3d,q, κ, ο, υ FADH2 ⟶  FAD S2, S3 
NADH ⟶  NAD+ + H+ S4a,e,g FADH2 ⟶  FAD + 2H+ S4a-i 
NADH ⟶  NAD+ + 2H+ S4c,f,h,i    
   FADH2 ⟶  FAD+ S5a-i 
NADH + H+ ⟶  NADH S6a FADH2 ⟶  FADH S6a-d 
   FADH2 ⟶  FADH+ S6e 
   FADH ⟶   S6f 
NADH ⟶  NAD + H+ S4b FADH ⟶  FAD+ S6g 
NADH ⟶  NAD+ + H+ S6h FADH ⟶  FAD+ + H+ S6h 
NADH ⟶  NAD+ + H+ S6i FADH ⟶  FAD+ + 2H+ S6i 

 

 Electron transfer from succinate in the TCA cycle to the prosthetic group FAD is a 
redox reaction, where oxidation (ox) of succinate yields 2{H++e-} – two hydrogen ions and 
two electrons – which are donated in the reduction (red) of FAD to FADH2 (Table 1), 
 

 ox: Succinate2-  ⟶  Fumarate2- + 2{H++e-}  (Eq. 1a) 
 red: 2{H++e-} + SDHA-FAD  ⟶  SDHA-FADH2 (Eq. 1b) 
 

The net redox reaction equation is 
 

 redox: Succinate2- + SDHA-FAD ⟶  SDHA-FADH2 + Fumarate2- (Eq. 1) 
 

Commonly the charges of succinate, fumarate (Eq. 1), and other metabolites are not 
shown explicitly to simplify graphical representations of metabolic pathways. But NAD+ 
is clearly distinguished from FAD (Figure 1). H+ in NADH+H+ ⟶ NAD+ is frequently 
omitted (Figure 3). The equilibrium (Eq. e in Table 1) depends on pH, whereas Eq. 1b (Eq. 
f in Table 1) is independent of pH. The fundamental difference between H+ and 2{H++e−} 
in Eq. e (Table 1) is lost in representations such as Figure 3.  
 

 In summary, two-electron oxidation of succinate is redox-linked to reduction of FAD 
to FADH2. In terms of electron entry into CII many publications show it in the wrong 
direction, i.e. FADH2 as electron donor from the TCA cycle to CII (Figure 3; Suppl Figures 
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S2 to S6). This erroneous presentation has a logical consequence. β-oxidation generates 
FADH2 (Figure 4). If FADH2 would donate electrons to CII, then CII can be seen as an 
enzyme involved downstream of FADH2 in FAO. This error requires clarification. 

 
5. Complex II and fatty acid oxidation 
 

 Electron transferring flavoprotein CETF and CI are the respiratory Complexes 
involved in convergent electron entry into the Q-junction during FAO (Figure 4).  
 

 

Figure 4. Fatty acid oxidation through the β-oxidation cycle (β-ox), the multi-enzyme 
electron transferring flavoprotein Complex (CETF, ETF:ETFDH; see text), and Complex I 
(CI) with convergent electron transfer into the Q-junction. 
 

 

Figure 5. When FADH2 is erroneously shown as a substrate of CII (1), a role of CII in 
oxidation of FADH2 from fatty acid oxidation is suggested as a consequence (2). 
Zoom into figures from (a) Jones, Bennett (2017); (b) Missaglia et al (2021); (c) Bansal et 
al (2019); (d) Beier et al (2015); (e) Himms-Hagen, Harper (2001). 
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 In the β-oxidation cycle of FAO, acetyl-CoA and the reducing equivalents FADH2 and 
NADH are formed in reactions catalyzed by acyl-CoA dehydrogenases and hydroxyacyl-
CoA dehydrogenases, respectively, in the mitochondrial matrix (Houten et al 2016). When 
FADH2 is erroneously shown free floating in the mt-matrix as a substrate of CII, a dubious 
role of CII in FAO is suggested as a consequence (Figure 5; Supplement 8). 
 

Lemmi et al (1990) noted: ‘mitochondrial Complex II also participates in the 
oxidation of fatty acids’. This holds for the oxidation of acetyl-Co in the TCA cycle, forming 
NADH and succinate with downstream electron flow through CI and CII, respectively, into 
the Q-junction (Figure 1). In contrast, electron transfer from FADH2 formed during β-
oxidation proceeds through electron transferring flavoprotein ETF. Fatty acylCoA 
dehydrogenases in the mitochondrial matrix reduce FAD to FADH2. The FADH2 of the fatty 
acyl-CoA DHs is reoxidized by the FAD-containing ETF (Crane, Beinert 1956).  
 

ETF and ETFDH (Wang et al 2019; or electron transfer flavoprotein:ubiqionone 
oxidoreductase ETF-QO, Watmough, Frerman 2010) comprise the ETF Complex (CETF), 
i.e. the ETF:ETFDH or ETF:ETF-QO system. CETF links electron transfer in β-oxidation to 
electron entry into the Q-junction independent of CII (Figure 4). Thus FADH2 can be seen 
as an internal substrate of CETF, comparable to the external substrates NADH for CI, 
succinate for CII, and glycerophosphate for CGpDH. 

 
6. Conclusions 
 

 There is currently ambiguity surrounding the precise role of Complex II in fatty acid 
oxidation. While Complex II is not essential for fatty acid oxidation, it plays a regulatory 
role by sensing changes in metabolic demand and activating the TCA cycle for oxidation 
of acetyl-Co depending on the metabolic conditions. This regulatory function may be 
particularly important during periods of low oxygen availability or high energy demand. 
The integration of FAO with the membrane-bound ETS (Wang et al 2019) has significant 
implications for understanding and treating disorders related to β-oxidation and 
oxidative phosphorylation. Using precisely defined terminology can prevent 
misunderstandings (Gnaiger et al 2020; footnotes in Supplement 1). Do misinformed 
diagrams ‒ from ambiguous electron transfer (Suppl Figures S2 to S8) to presentation of 
CII as a H+ pump (Suppl Figure S9) ‒ cast any doubts on the quality of the publication? 
Whether using iconic or symbolic elements in graphical representations, incorporating 
complementary text not only enhances the communication of intended meaning but 
diagrams will be improved in the process. When peer review provides insufficient help 
for corrections, post-peer review by editors and critical readers is required for revisions 
of articles which may be re-published as living communications (Gnaiger 2021). The 
present review aims to raise awareness in the scientific community about the inherent 
ambiguity crisis, complementary to addressing the widely recognized issues of the 
reproducibility and credibility crisis (Gall et al 2017). Clarification instead of perpetuation 
of Complex II ambiguities leads to a better representation of fundamental concepts of 
bioenergetics and helps to maintain the high scientific standards required for translating 
knowledge on metabolism into clinical solutions for mitochondrial diseases. 
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2{H++e-} 
 
CI 
CII 
CETF 
 
CGpDH 
 
DH 
FADH2 
 
FAD 
 
FAO 
FMNH2  

redox equivalents in H+-linked 
electron transfer 
Complex I 
Complex II 
electron transferring flavoprotein 
Complex (ETF:ETFDH) 
mt-glycerophosphate 
dehydrogenase Complex 
dehydrogenase 
reduced flavin adenoside 
dinucleotide 
oxidized flavin adenoside 
dinucleotide 
fatty acid oxidation 
reduced flavin mononucleotide 

mt-matrix 
mtIM  
NADH2 
 
NAD+ 
 
Q 
 
 
QFR 
 
SQR 
 
SDH, SDHABCD 
TCA cycle 

mitochondrial matrix 
mitochondrial inner membrane 
reduced nicotinamide adenine 
dinucleotide 
oxidized nicotinamide adenine 
dinucleotide 
ETS-reactive coenzyme Q, 
oxidation state is not implied 
mena-quinol-fumarate 
oxidoreductase 
succinate-ubiquinone 
oxidoreductase 
succinate dehydrogenase, CII 
tricarboxylic acid cycle 
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Supplement 1. Footnotes on terminology 
 

Coenzyme: A coenzyme or cosubstrate is a cofactor that is attached loosely and transiently 
to an enzyme (IUPAC definition). 

 

Cofactor: A cofactor is 'an organic molecule or ion (usually a metal ion) that is required by 
an enzyme for its activity. It may be attached either loosely (coenzyme) or tightly 
(prosthetic group)' (IUPAC definition). 

 

Electron transfer system ETS: The convergent architecture of the electron transfer system 
is emphasized in contrast to linear electron transfer chains ETCs within segments of 
the ETS. 

 

Electron transfer: A distinction is necessary between electron transfer in redox reactions 
and electron transport (translocation) in the diffusion of charged ionic species 
within or between cellular compartments. The symbol 2{H++e−} is introduced to 
indicate H+-linked electron transfer of two hydrogen ions and two electrons in a 
redox reaction. 

 

H+-linked electron transfer: The term H+-coupled electron transfer (Hsu et al 2022) is 
replaced by H+-linked electron transfer, to avoid confusion with coupled H+ 
translocation.  

 

Matrix-ETS: Electron transfer and corresponding OXPHOS capacities are classically 
studied in mitochondrial preparations as oxygen consumption supported by various 
fuel substrates undergoing partial oxidation in the mt-matrix, such as pyruvate, 
malate, succinate, and others. Therefore, the matrix component of ETS (matrix-ETS) 
is distinguished from the ETS bound to the mt-inner membrane (membrane-ETS; 
Gnaiger et al 2020). 

 

Membrane-ETS: Electron transfer is frequently considered as the segment of redox 
reactions linked to the mtIM. However, the membrane-ETS is only part of the total 
ETS, which includes the upstream matrix-ETS. 

 

Misinformation: Misinformation is the mistaken sharing of the same content (Wardle 
2023). 

 

Prosthetic group: A prosthetic group is cofactor that is attached permanently and tightly 
or even covalently to an enzyme and that is regenerated in each enzymatic turnover. 

 

Substrate: A substrate in a chemical reaction has a negative stoichiometric number since 
it is consumed, whereas a product has a positive stoichiometric number since it is 
produced. The general definition of a substrate in an enzyme-catalized reaction 
relies on the definition of the chemical reaction, without restriction to the nature of 
the substrate, i.e. independent of the substrate being a chemical entity in solution or 
a loosely bound cosubstrate (coenzyme) or even a tightly bound prosthetic group. 
The latter may be explicitly distinguished as a bound (internal) substrate from a free 
(external) substrate. Even different substrate pools may coexist (CoQ). 

 

2{H++e-}: The symbol [2 H] is frequently used to indicate redox equivalents in the transfer 
from hydrogen donors to hydrogen acceptors. However, 2[H] does not explicitly 
express that it applies to both electron and hydrogen ion transfer. Brackets are 
avoided to exclude the confusion with their frequent application to indicate amount-
of-substance concentrations. Two-electron transfer 2{H++e-} is distinguished from 
single-electron transfer {H+}+{e-}.  
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Supplement 2 
 

FAD a substrate of SDH and FADH2 a substrate of CII (Figure S2) 
 

 SDH: FAD ⟶  FADH2 ;  TCA cycle: ⟶  FADH2 
 CII: FADH2 ⟶  FAD ; FADH2 ⟶ (1) 
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Figure S2. Complex II ambiguities in graphical representations on FADH2 as a 
substrate of Complex II in the canonical forward electron transfer. The TCA cycle 
reduces FAD to FADH2 ‒ in several cases shown to be catalyzed by SDH. Then FADH2 is 
erroneously shown to feed electrons into CII. Alphabetical sequence of publications from 
2001 to 2023. See References for Figure S2. 
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Supplement 3 
 

FADH2 as substrate of CII (Figure S3) 
 

  FADH2 ⟶  FAD (1) 
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Figure S3. Continued 
 
  



 

 
 
 

Complex II ambiguities 

20 Gnaiger (2023) MitoFit Preprints 2023.3.v5. 
 

 
 
 

Figure S3. Continued 
  



 
 

 

MitoFit 2023.3.v5. https://doi.org/10.26124/mitofit:2023-0003.v5 

www.mitofit.org 21 
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Figure S3. Complex II ambiguities in graphical representations on FADH2 as a 
substrate of Complex II in the canonical forward electron transfer. Alphabetical 
sequence of publications from 2001 to 2023. See References for Figure S3. 
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FADH2 as substrate of CII and FAD + 2H+ as products (Figure S4) 
 

   FADH2 ⟶  FAD + 2H+ (2) 
 

 

Figure S4. Complex II ambiguities: FADH2 as substrate of CII and FAD + 2H+ as 
products. Alphabetical sequence of publications from 2001 to 2023. See References for 
Figure S4. 
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FADH2 as substrate of CII and FAD+ as product (Figure S5) 
 

  FADH2 ⟶  FAD+ (3) 
 

 

Figure S5. Complex II ambiguities: FADH2 as substrate of CII and FAD+ as product. 
Alphabetical sequence of publications from 2001 to 2023. See References for Figure S5. 
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FADH2 or FADH as substrate of CII and FADH, FADH+, or FAD+ as product (Figure S6) 
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 g FADH ⟶  FAD+ (7) 
 

 h FADH ⟶  FAD+        + H+ (8) 
 

 i FADH ⟶  FAD+        + 2H+ (9) 
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Figure S6. Complex II ambiguities: FADH2 as substrate of CII and FADH or FADH+ as 
product. Sequence of publications from 2001 to 2023 according to (4) to (9). See 
References for Figure S6. 
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FADH2 or FADH as substrate of CII in websites (Figure S7) 
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Figure S7. Complex II ambiguities in graphical representations on FADH2 as a 
substrate of Complex II in the canonical forward electron transfer. (a, b, d-f, o-θ) 
FADH2 → FAD; (a’, h-n) FADH2 → FAD+2H+; (c) FADH2 → FAD+ + 2H+; and (g) FADH → 
FAD+H; should be corrected to FAD → FADH2. NADH → NAD+ is frequently written in 
graphs without showing the H+ on the left side of the arrow, except for (p-r). (a-f, m) 
NADH → NAD++H+; (g) NADH → NAD+H; (h, i, l) NADH → NAD++2H+; (j, k) NADH+H+ → 
NAD++2H+; and (ι) NADH → NAD should be corrected to NADH+H+ → NAD+ (Eq. 3a). 
Weblinks #: (a) 1-8; (a’) 9-10; (b) 1-6,9-11; (c) 11-17; (d) 18; (e) 19; (f) 20; (g) 21; (h) 
22-23; (i) 24; (j) 25; (k) 26; (l) 27; (m) 28; (n) 11,29; (o) 30; (p) 31-32; (q) 33; (r) 34; (s) 
35; (t) 12,22,36; (u) 37; (v) 9,10; (w) 11; (x) 38; (y) 39; (z) 40; (α) 41; (β) 11; (γ) 42; (δ) 
43; (ε) 44; (ζ) 45; (η) 46; (θ) 47; (ι) 48. 
 

Weblinks for Figure S7 (retrieved 2023-03-21 to 2023-05-04) 
 

1 (a,b) https://openstax.org/books/biology/pages/7-4-oxidative-phosphorylation  - 
OpenStax Biology (CC BY 3.0) - Fig. 7.10, Fig. 7.12. 

2 (a,b) https://opentextbc.ca/biology/chapter/4-3-citric-acid-cycle-and-oxidative-
phosphorylation/ - Charles Molnar, Jane Gair, Concepts of Biology - 1st Canadian Edition, 
BCcampus - Fig. 4.19. 

3 (a,b) https://www.pharmaguideline.com/2022/01/electron-transport-chain.html -
Pharmaguideline 

4 (a,b) https://www.texasgateway.org/resource/74-oxidative-phosphorylation - Texas 
Gateway - Fig. 7.11, Fig. 7.13.  

5 (a,b) https://opened.cuny.edu/courseware/lesson/639/overview - CUNY 
6 (a,b) https://courses.lumenlearning.com/wm-biology1/chapter/reading-electron-

transport-chain/ - lumen Biology for Majors I - Fig. 1, Fig. 3. 

https://openstax.org/books/biology/pages/7-4-oxidative-phosphorylation
https://opentextbc.ca/biology/chapter/4-3-citric-acid-cycle-and-oxidative-phosphorylation/
https://opentextbc.ca/biology/chapter/4-3-citric-acid-cycle-and-oxidative-phosphorylation/
https://www.pharmaguideline.com/2022/01/electron-transport-chain.html
https://www.texasgateway.org/resource/74-oxidative-phosphorylation
https://opened.cuny.edu/courseware/lesson/639/overview
https://courses.lumenlearning.com/wm-biology1/chapter/reading-electron-transport-chain/
https://courses.lumenlearning.com/wm-biology1/chapter/reading-electron-transport-chain/
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7 (a) 
https://bio.libretexts.org/Bookshelves/Introductory_and_General_Biology/Book%3A_Gen
eral_Biology_(Boundless)/07%3A_Cellular_Respiration/7.11%3A_Oxidative_Phosphorylat
ion_-_Electron_Transport_Chain - LibreTexts Biology – Fig. 7.11.1 

8 (a) https://brainbrooder.com/lesson/254/7-4-1-electron-transport-chain - Brain 
Brooder 

9 (a’,b,v) https://www.khanacademy.org/science/ap-biology/cellular-energetics/cellular-
respiration-ap/a/oxidative-phosphorylation-etc - Khan Academy - Image modified from 
"Oxidative phosphorylation: Fig. 1", by OpenStax College, Biology (CC BY 3.0) / Image 
modified from "Oxidative phosphorylation: Fig. 3," by Openstax College, Biology (CC BY 
3.0) 

10 (a’,b,v) https://learn.saylor.org/mod/page/view.php?id=32815 -Saylor Academy 
11 (b,c,n,w,β) https://www.expii.com/t/electron-transport-chain-summary-diagrams-

10139 - expii - Image source: By CNX OpenStax / By OpenStax College CC BY 3.0, via 
Wikimedia Commons / Whitney, Rolfes 2002 / By User:Rozzychan CC BY-SA 2.5, via 
Wikimedia Commons 

12 (c,t) https://www.thoughtco.com/electron-transport-chain-and-energy-production-
4136143 - ThoughtCo / extender01 / iStock / Getty Images Plus 

13 (c) https://commons.wikimedia.org/w/index.php?curid=30148497 - wikimedia 
30148497 - Anatomy & Physiology, Connexions Web site. 
http://cnx.org/content/col11496/1.6/, 2013-06-19 

14 (c) https://biologydictionary.net/electron-transport-chain-and-oxidative-
phosphorylation/ - biologydictionary.net 2018-08-21 

15 (c) https://www.quora.com/Why-does-FADH2-form-2-ATP - Quora 
16 (c) https://teachmephysiology.com/biochemistry/atp-production/electron-transport-

chain/ - TeachMePhysiology - Fig. 1. 2023-03-13 
17 (c) https://www.toppr.com/ask/question/short-long-answer-types-whatis-the-electron-

transport-system-and-what-are-its-functions/ - toppr 
18 (d) https://www.labxchange.org/library/items/lb:LabXchange:005ad47f-7556-3887-

b4a6-66e74198fbcf:html:1 - Labxchange - Figure 8.15 credit: modification of work by 
Klaus Hoffmeier 

19 (e) https://jackwestin.com/resources/mcat-content/oxidative-phosphorylation/electron-
transfer-in-mitochondria - Jack Westin MCAT Courses 

20 (f) 
https://videodelivery.net/79e91c40bf96f9692560fa378c5086b6/thumbnails/thumbnail.
jpg - videodelivery 

21 (g) 
https://www.sparknotes.com/biology/cellrespiration/oxidativephosphorylation/section
2/ - SparkNotes 

22 (h,t) https://researchtweet.com/mitochondrial-electron-transport-chain-2/ - 
researchtweet 

23 (h) https://microbenotes.com/electron-transport-chain/ - Microbe Notes 
24 (i) https://flexbooks.ck12.org/cbook/ck-12-biology-flexbook-

2.0/section/2.28/primary/lesson/electron-transport-bio/ - FlexBooks - CK-12 Biology for 
High School- 2.28 Electron Transport, Fig. 2 

25 (j) https://theory.labster.com/Electron_Transport_Chain/ - Labster Theory 
26 (k) https://www2.nau.edu/~fpm/bio205/u4fg36.html - nau.edu 
27 (l) https://www.sciencefacts.net/electron-transport-chain.html - ScienceFacts 
28 (m) https://www.ck12.org/biology/electron-transport/lesson/The-Electron-Transport-

Chain-Advanced-BIO-ADV/ - cK-12 
29 (n) 

https://commons.wikimedia.org/wiki/File:Mitochondrial_electron_transport_chain.png - 
Wikimedia 

https://bio.libretexts.org/Bookshelves/Introductory_and_General_Biology/Book%3A_General_Biology_(Boundless)/07%3A_Cellular_Respiration/7.11%3A_Oxidative_Phosphorylation_-_Electron_Transport_Chain
https://bio.libretexts.org/Bookshelves/Introductory_and_General_Biology/Book%3A_General_Biology_(Boundless)/07%3A_Cellular_Respiration/7.11%3A_Oxidative_Phosphorylation_-_Electron_Transport_Chain
https://bio.libretexts.org/Bookshelves/Introductory_and_General_Biology/Book%3A_General_Biology_(Boundless)/07%3A_Cellular_Respiration/7.11%3A_Oxidative_Phosphorylation_-_Electron_Transport_Chain
https://brainbrooder.com/lesson/254/7-4-1-electron-transport-chain
https://www.khanacademy.org/science/ap-biology/cellular-energetics/cellular-respiration-ap/a/oxidative-phosphorylation-etc
https://www.khanacademy.org/science/ap-biology/cellular-energetics/cellular-respiration-ap/a/oxidative-phosphorylation-etc
https://learn.saylor.org/mod/page/view.php?id=32815
https://www.expii.com/t/electron-transport-chain-summary-diagrams-10139
https://www.expii.com/t/electron-transport-chain-summary-diagrams-10139
https://www.thoughtco.com/electron-transport-chain-and-energy-production-4136143
https://www.thoughtco.com/electron-transport-chain-and-energy-production-4136143
https://commons.wikimedia.org/w/index.php?curid=30148497
https://biologydictionary.net/electron-transport-chain-and-oxidative-phosphorylation/
https://biologydictionary.net/electron-transport-chain-and-oxidative-phosphorylation/
https://www.quora.com/Why-does-FADH2-form-2-ATP
https://teachmephysiology.com/biochemistry/atp-production/electron-transport-chain/
https://teachmephysiology.com/biochemistry/atp-production/electron-transport-chain/
https://www.toppr.com/ask/question/short-long-answer-types-whatis-the-electron-transport-system-and-what-are-its-functions/
https://www.toppr.com/ask/question/short-long-answer-types-whatis-the-electron-transport-system-and-what-are-its-functions/
https://www.labxchange.org/library/items/lb:LabXchange:005ad47f-7556-3887-b4a6-66e74198fbcf:html:1
https://www.labxchange.org/library/items/lb:LabXchange:005ad47f-7556-3887-b4a6-66e74198fbcf:html:1
https://jackwestin.com/resources/mcat-content/oxidative-phosphorylation/electron-transfer-in-mitochondria
https://jackwestin.com/resources/mcat-content/oxidative-phosphorylation/electron-transfer-in-mitochondria
https://videodelivery.net/79e91c40bf96f9692560fa378c5086b6/thumbnails/thumbnail.jpg
https://videodelivery.net/79e91c40bf96f9692560fa378c5086b6/thumbnails/thumbnail.jpg
https://www.sparknotes.com/biology/cellrespiration/oxidativephosphorylation/section2/
https://www.sparknotes.com/biology/cellrespiration/oxidativephosphorylation/section2/
https://www.sparknotes.com/biology/cellrespiration/oxidativephosphorylation/section2/
https://researchtweet.com/mitochondrial-electron-transport-chain-2/
https://microbenotes.com/electron-transport-chain/
https://flexbooks.ck12.org/cbook/ck-12-biology-flexbook-2.0/section/2.28/primary/lesson/electron-transport-bio/
https://flexbooks.ck12.org/cbook/ck-12-biology-flexbook-2.0/section/2.28/primary/lesson/electron-transport-bio/
https://theory.labster.com/Electron_Transport_Chain/
https://www2.nau.edu/~fpm/bio205/u4fg36.html
https://www.sciencefacts.net/electron-transport-chain.html
https://www.ck12.org/biology/electron-transport/lesson/The-Electron-Transport-Chain-Advanced-BIO-ADV/
https://www.ck12.org/biology/electron-transport/lesson/The-Electron-Transport-Chain-Advanced-BIO-ADV/
https://commons.wikimedia.org/wiki/File:Mitochondrial_electron_transport_chain.png
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30 (o) https://www.creative-biolabs.com/drug-discovery/therapeutics/electron-transport-
chain.htm - creative-biolabs 

31 (p) https://www.dreamstime.com/electron-transport-chain-as-respiratory-embedded-
transporters-outline-diagram-electron-transport-chain-as-respiratory-embedded-
image235345232 - dreamstime 

32 (p) https://vectormine.com/item/electron-transport-chain-as-respiratory-embedded-
transporters-outline-diagram/ - VectorMine 

33  (q) 
https://www.google.com/imgres?imgurl=https%3A%2F%2Fi.ytimg.com%2Fvi%2FLsRQ
5_EmxJA%2Fmaxresdefault.jpg&tbnid=6w-0DVPMw7vOdM&vet=12ahUKEwjw2YO5--
T9AhUwpCcCHduuDVgQMygDegUIARDzAQ..i&imgrefurl=https%3A%2F%2Fwww.youtub
e.com%2Fwatch%3Fv%3DLsRQ5_EmxJA&docid=bZxQYNch1Ys-
VM&w=1280&h=720&q=electron%20transport%20chain&hl=en-US&client=firefox-b-
d&ved=2ahUKEwjw2YO5--T9AhUwpCcCHduuDVgQMygDegUIARDzAQ - YouTube Dirty 
Medicine Biochemistry - Uploaded 2019-07-18 

34 (r) http://www.dbriers.com/tutorials/2012/04/the-electron-transport-chain-simplified/ 
- DBriers  

35 (s) https://sbi4uraft2014.weebly.com/electron-transport-chain.html - SNC1D - BIOLOGY 
LESSON PLAN BLOG 

36 (t) https://www.dreamstime.com/royalty-free-stock-photography-electron-transport-
chain-illustration-oxidative-phosphorylation-image36048617 -  dreamstime 

37 (u) http://hyperphysics.phy-astr.gsu.edu/hbase/Biology/Complex1.html - hyperphysics 
38 (x) https://www.urbanpro.com/ba-tuition/oxidative-phosphorylation - UrbanPro 
39 (y) https://quizlet.com/245664214/electron-transport-chain-facts-of-cell-respiration-

diagram/ - Quizlet 
40 (z) https://www.unm.edu/~lkravitz/Exercise%20Phys/ETCstory.html - unm.edu 
41  (α) 

https://www.google.com/imgres?imgurl=https%3A%2F%2Fi.ytimg.com%2Fvi%2FVER6
xW_r1vc%2Fmaxresdefault.jpg&tbnid=Brshl0oN9LyYnM&vet=12ahUKEwjjlKSKpOX9Ah
WjmycCHbvGC34QMygWegUIARDWAQ..i&imgrefurl=https%3A%2F%2Fwww.youtube.co
m%2Fwatch%3Fv%3DVER6xW_r1vc&docid=VgTgrLf24Lzg4M&w=1280&h=720&itg=1&
q=FADH2%20is%20the%20substrates%20of%20Complex%20II&hl=en&client=firefox-b-
d&ved=2ahUKEwjjlKSKpOX9AhWjmycCHbvGC34QMygWegUIARDWAQ - YouTube 
sciencemusicvideos - Uploaded 2014-08-19 

42 (γ) https://biochemden.com/electron-transport-chain-mechanism/ - BiochemDen.com 
43 (δ) https://hopes.stanford.edu/riboflavin/ - hopes, Huntington’s outreach project for 

education, at Stanford 
44 (ε) https://www.studocu.com/en-gb/document/university-college-london/mammalian-

physiology/electron-transport-chain/38063777 - studocu, University College London 
45 (ζ) https://www.google.com/imgres?imgurl=https%3A%2F%2Fars.els-

cdn.com%2Fcontent%2Fimage%2F3-s2.0-B9780128008836000215-f21-07-
9780128008836.jpg&imgrefurl=https%3A%2F%2Fwww.sciencedirect.com%2Ftopics%2
Fengineering%2Felectron-transport-
chain&tbnid=g3dD4u8Tvd6TWM&vet=12ahUKEwjc9deUprT9AhVxhv0HHXZbAd0QMygC
egUIARDBAQ..i&docid=Moj_2_W0OpUDcM&w=632&h=439&q=FADH2%20is%20the%20
substrates%20of%20Complex%20II&client=firefox-b-
d&ved=2ahUKEwjc9deUprT9AhVxhv0HHXZbAd0QMygCegUIARDBAQ - ScienceDirect 

46 (η) https://www.bbc.co.uk/bitesize/guides/zdq9382/revision/5 - BBC BITESIZE 
47 (θ) https://www.freepik.com/premium-vector/oxidative-phosphorylation-process-

electron-transport-chain-final-step-cellular-respiration_29211885.htm - freepik 
48  (ι) 

https://chem.libretexts.org/Courses/Saint_Marys_College_Notre_Dame_IN/CHEM_118_(U
nder_Construction)/CHEM_118_Textbook/12%3A_Metabolism_(Biological_Energy)/12.4

https://www.creative-biolabs.com/drug-discovery/therapeutics/electron-transport-chain.htm
https://www.creative-biolabs.com/drug-discovery/therapeutics/electron-transport-chain.htm
https://www.dreamstime.com/electron-transport-chain-as-respiratory-embedded-transporters-outline-diagram-electron-transport-chain-as-respiratory-embedded-image235345232
https://www.dreamstime.com/electron-transport-chain-as-respiratory-embedded-transporters-outline-diagram-electron-transport-chain-as-respiratory-embedded-image235345232
https://www.dreamstime.com/electron-transport-chain-as-respiratory-embedded-transporters-outline-diagram-electron-transport-chain-as-respiratory-embedded-image235345232
https://vectormine.com/item/electron-transport-chain-as-respiratory-embedded-transporters-outline-diagram/
https://vectormine.com/item/electron-transport-chain-as-respiratory-embedded-transporters-outline-diagram/
https://www.google.com/imgres?imgurl=https%3A%2F%2Fi.ytimg.com%2Fvi%2FLsRQ5_EmxJA%2Fmaxresdefault.jpg&tbnid=6w-0DVPMw7vOdM&vet=12ahUKEwjw2YO5--T9AhUwpCcCHduuDVgQMygDegUIARDzAQ..i&imgrefurl=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DLsRQ5_EmxJA&docid=bZxQYNch1Ys-VM&w=1280&h=720&q=electron%20transport%20chain&hl=en-US&client=firefox-b-d&ved=2ahUKEwjw2YO5--T9AhUwpCcCHduuDVgQMygDegUIARDzAQ
https://www.google.com/imgres?imgurl=https%3A%2F%2Fi.ytimg.com%2Fvi%2FLsRQ5_EmxJA%2Fmaxresdefault.jpg&tbnid=6w-0DVPMw7vOdM&vet=12ahUKEwjw2YO5--T9AhUwpCcCHduuDVgQMygDegUIARDzAQ..i&imgrefurl=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DLsRQ5_EmxJA&docid=bZxQYNch1Ys-VM&w=1280&h=720&q=electron%20transport%20chain&hl=en-US&client=firefox-b-d&ved=2ahUKEwjw2YO5--T9AhUwpCcCHduuDVgQMygDegUIARDzAQ
https://www.google.com/imgres?imgurl=https%3A%2F%2Fi.ytimg.com%2Fvi%2FLsRQ5_EmxJA%2Fmaxresdefault.jpg&tbnid=6w-0DVPMw7vOdM&vet=12ahUKEwjw2YO5--T9AhUwpCcCHduuDVgQMygDegUIARDzAQ..i&imgrefurl=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DLsRQ5_EmxJA&docid=bZxQYNch1Ys-VM&w=1280&h=720&q=electron%20transport%20chain&hl=en-US&client=firefox-b-d&ved=2ahUKEwjw2YO5--T9AhUwpCcCHduuDVgQMygDegUIARDzAQ
https://www.google.com/imgres?imgurl=https%3A%2F%2Fi.ytimg.com%2Fvi%2FLsRQ5_EmxJA%2Fmaxresdefault.jpg&tbnid=6w-0DVPMw7vOdM&vet=12ahUKEwjw2YO5--T9AhUwpCcCHduuDVgQMygDegUIARDzAQ..i&imgrefurl=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DLsRQ5_EmxJA&docid=bZxQYNch1Ys-VM&w=1280&h=720&q=electron%20transport%20chain&hl=en-US&client=firefox-b-d&ved=2ahUKEwjw2YO5--T9AhUwpCcCHduuDVgQMygDegUIARDzAQ
https://www.google.com/imgres?imgurl=https%3A%2F%2Fi.ytimg.com%2Fvi%2FLsRQ5_EmxJA%2Fmaxresdefault.jpg&tbnid=6w-0DVPMw7vOdM&vet=12ahUKEwjw2YO5--T9AhUwpCcCHduuDVgQMygDegUIARDzAQ..i&imgrefurl=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DLsRQ5_EmxJA&docid=bZxQYNch1Ys-VM&w=1280&h=720&q=electron%20transport%20chain&hl=en-US&client=firefox-b-d&ved=2ahUKEwjw2YO5--T9AhUwpCcCHduuDVgQMygDegUIARDzAQ
https://www.google.com/imgres?imgurl=https%3A%2F%2Fi.ytimg.com%2Fvi%2FLsRQ5_EmxJA%2Fmaxresdefault.jpg&tbnid=6w-0DVPMw7vOdM&vet=12ahUKEwjw2YO5--T9AhUwpCcCHduuDVgQMygDegUIARDzAQ..i&imgrefurl=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DLsRQ5_EmxJA&docid=bZxQYNch1Ys-VM&w=1280&h=720&q=electron%20transport%20chain&hl=en-US&client=firefox-b-d&ved=2ahUKEwjw2YO5--T9AhUwpCcCHduuDVgQMygDegUIARDzAQ
http://www.dbriers.com/tutorials/2012/04/the-electron-transport-chain-simplified/
https://sbi4uraft2014.weebly.com/electron-transport-chain.html
https://www.dreamstime.com/royalty-free-stock-photography-electron-transport-chain-illustration-oxidative-phosphorylation-image36048617
https://www.dreamstime.com/royalty-free-stock-photography-electron-transport-chain-illustration-oxidative-phosphorylation-image36048617
http://hyperphysics.phy-astr.gsu.edu/hbase/Biology/Complex1.html
https://www.urbanpro.com/ba-tuition/oxidative-phosphorylation
https://quizlet.com/245664214/electron-transport-chain-facts-of-cell-respiration-diagram/
https://quizlet.com/245664214/electron-transport-chain-facts-of-cell-respiration-diagram/
https://www.unm.edu/~lkravitz/Exercise%20Phys/ETCstory.html
https://www.google.com/imgres?imgurl=https%3A%2F%2Fi.ytimg.com%2Fvi%2FVER6xW_r1vc%2Fmaxresdefault.jpg&tbnid=Brshl0oN9LyYnM&vet=12ahUKEwjjlKSKpOX9AhWjmycCHbvGC34QMygWegUIARDWAQ..i&imgrefurl=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DVER6xW_r1vc&docid=VgTgrLf24Lzg4M&w=1280&h=720&itg=1&q=FADH2%20is%20the%20substrates%20of%20Complex%20II&hl=en&client=firefox-b-d&ved=2ahUKEwjjlKSKpOX9AhWjmycCHbvGC34QMygWegUIARDWAQ
https://www.google.com/imgres?imgurl=https%3A%2F%2Fi.ytimg.com%2Fvi%2FVER6xW_r1vc%2Fmaxresdefault.jpg&tbnid=Brshl0oN9LyYnM&vet=12ahUKEwjjlKSKpOX9AhWjmycCHbvGC34QMygWegUIARDWAQ..i&imgrefurl=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DVER6xW_r1vc&docid=VgTgrLf24Lzg4M&w=1280&h=720&itg=1&q=FADH2%20is%20the%20substrates%20of%20Complex%20II&hl=en&client=firefox-b-d&ved=2ahUKEwjjlKSKpOX9AhWjmycCHbvGC34QMygWegUIARDWAQ
https://www.google.com/imgres?imgurl=https%3A%2F%2Fi.ytimg.com%2Fvi%2FVER6xW_r1vc%2Fmaxresdefault.jpg&tbnid=Brshl0oN9LyYnM&vet=12ahUKEwjjlKSKpOX9AhWjmycCHbvGC34QMygWegUIARDWAQ..i&imgrefurl=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DVER6xW_r1vc&docid=VgTgrLf24Lzg4M&w=1280&h=720&itg=1&q=FADH2%20is%20the%20substrates%20of%20Complex%20II&hl=en&client=firefox-b-d&ved=2ahUKEwjjlKSKpOX9AhWjmycCHbvGC34QMygWegUIARDWAQ
https://www.google.com/imgres?imgurl=https%3A%2F%2Fi.ytimg.com%2Fvi%2FVER6xW_r1vc%2Fmaxresdefault.jpg&tbnid=Brshl0oN9LyYnM&vet=12ahUKEwjjlKSKpOX9AhWjmycCHbvGC34QMygWegUIARDWAQ..i&imgrefurl=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DVER6xW_r1vc&docid=VgTgrLf24Lzg4M&w=1280&h=720&itg=1&q=FADH2%20is%20the%20substrates%20of%20Complex%20II&hl=en&client=firefox-b-d&ved=2ahUKEwjjlKSKpOX9AhWjmycCHbvGC34QMygWegUIARDWAQ
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%3A_The_Citric_Acid_Cycle_and_Electron_Transport - LibreTexts Chemistry - The Citric 
Acid Cycle and Electron Transport – Fig. 12.4.3 

 
 
Supplement 8 
 
Weblinks on FAO and CII (retrieved 2023-03-21 to 2023-05-02) 
 

49 https://conductscience.com/electron-transport-chain/ - Conduct Science: "In Complex II, 
the enzyme succinate dehydrogenase in the inner mitochondrial membrane reduce FADH2 to 
FAD+. Simultaneously, succinate, an intermediate in the Krebs cycle, is oxidized to fumarate." 
- Comments: FAD does not have a postive charge. FADH2 is the reduced form, it is not 
reduced. And again: In CII, FAD is reduced to FADH2. 

50 https://themedicalbiochemistrypage.org/oxidative-phosphorylation-related-
mitochondrial-functions/ - The Medical Biochemistry Page: ‘In addition to transferring 
electrons from the FADH2 generated by 
SDH, complex II also accepts electrons 
from the FADH2 generated during fatty 
acid oxidation via the fatty acyl-CoA 
dehydrogenases and from mitochondrial 
glycerol-3-phosphate dehydrogenase 
(GPD2) of the glycerol phosphate shuttle’ 
(Figure S8). 

 

Figure S8. Fatty acid oxidation and 
glycerophosphate dehydrogenase 
erroneously shown to feed FADH2 
into Complex II. Weblink #50. 

 
51 

https://www.chem.purdue.edu/courses/chm333/Spring%202013/Lectures/Spring%20
2013%20Lecture%2037%20-%2038.pdf - CHM333 LECTURES 37 & 38: 4/27 – 29/13 
SPRING 2013 Professor Christine Hrycyna - Acyl-CoA dehydrogenase is listed under 
'Electron transfer in Complex II'. 
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https://www.chem.purdue.edu/courses/chm333/Spring%202013/Lectures/Spring%202013%20Lecture%2037%20-%2038.pdf
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Supplement 9 
 

CII as a proton pump (Figure S9) 
 

 

Figure S9. Complex II as a proton pump. 
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