Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Bailey 2009 Am J Physiol Regul Integr Comp Physiol

From Bioblast
Publications in the MiPMap
Bailey DM, Taudorf S, Berg RMG, Lundby C, McEneny J, Young IS, Evans KA, James PE, Shore A, Hullin DA, McCord JM, Pedersen BK, Möller K (2009) Increased cerebral output of free radicals during hypoxia: implications for acute mountain sickness?. Am J Physiol Regul Integr Comp Physiol 297:R1283-92.

» PMID:19726713 Open access

Bailey DM, Taudorf S, Berg RMG, Lundby C, McEneny J, Young IS, Evans KA, James PE, Shore A, Hullin DA, McCord JM, Pedersen BK, Möller K (2009) Am J Physiol Regul Integr Comp Physiol

Abstract: This study examined whether hypoxia causes free radical-mediated disruption of the blood-brain barrier (BBB) and impaired cerebral oxidative metabolism and whether this has any bearing on neurological symptoms ascribed to acute mountain sickness (AMS). Ten men provided internal jugular vein and radial artery blood samples during normoxia and 9-h passive exposure to hypoxia (12.9% O(2)). Cerebral blood flow was determined by the Kety-Schmidt technique with net exchange calculated by the Fick principle. AMS and headache were determined with clinically validated questionnaires. Electron paramagnetic resonance spectroscopy and ozone-based chemiluminescence were employed for direct detection of spin-trapped free radicals and nitric oxide metabolites. Neuron-specific enolase (NSE), S100beta, and 3-nitrotyrosine (3-NT) were determined by ELISA. Hypoxia increased the arterio-jugular venous concentration difference (a-v(D)) and net cerebral output of lipid-derived alkoxyl-alkyl free radicals and lipid hydroperoxides (P < 0.05 vs. normoxia) that correlated with the increase in AMS/headache scores (r = -0.50 to -0.90, P < 0.05). This was associated with a reduction in a-v(D) and hence net cerebral uptake of plasma nitrite and increased cerebral output of 3-NT (P < 0.05 vs. normoxia) that also correlated against AMS/headache scores (r = 0.74-0.87, P < 0.05). In contrast, hypoxia did not alter the cerebral exchange of S100beta and both global cerebral oxidative metabolism (cerebral metabolic rate of oxygen) and neuronal integrity (NSE) were preserved (P > 0.05 vs. normoxia). These findings indicate that hypoxia stimulates cerebral oxidative-nitrative stress, which has broader implications for other clinical models of human disease characterized by hypoxemia. This may prove a risk factor for AMS by a mechanism that appears independent of impaired BBB function and cerebral oxidative metabolism.

Cited by

  • Komlódi T, Schmitt S, Zdrazilova L, Donnelly C, Zischka H, Gnaiger E. Oxygen dependence of hydrogen peroxide production in isolated mitochondria and permeabilized cells. MitoFit Preprints (in prep).

Labels:






MitoFit 2021 AmR