Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Jia 2018 Cells

From Bioblast
Publications in the MiPMap
Jia D, Park JH, Jung KH, Levine H, Kaipparettu BA (2018) Elucidating the metabolic plasticity of cancer: mitochondrial reprogramming and hybrid metabolic states. Cells 7:21. https://doi.org/10.3390/cells7030021

» PMID: 29534029 Open Access

Jia D, Park JH, Jung KH, Levine H, Kaipparettu BA (2018) Cells

Abstract: Aerobic glycolysis, also referred to as the Warburg effect, has been regarded as the dominant metabolic phenotype in cancer cells for a long time. More recently, it has been shown that mitochondria in most tumors are not defective in their ability to carry out oxidative phosphorylation (OXPHOS). Instead, in highly aggressive cancer cells, mitochondrial energy pathways are reprogrammed to meet the challenges of high energy demand, better utilization of available fuels and macromolecular synthesis for rapid cell division and migration. Mitochondrial energy reprogramming is also involved in the regulation of oncogenic pathways via mitochondria-to-nucleus retrograde signaling and post-translational modification of oncoproteins. In addition, neoplastic mitochondria can engage in crosstalk with the tumor microenvironment. For example, signals from cancer-associated fibroblasts can drive tumor mitochondria to utilize OXPHOS, a process known as the reverse Warburg effect. Emerging evidence shows that cancer cells can acquire a hybrid glycolysis/OXPHOS phenotype in which both glycolysis and OXPHOS can be utilized for energy production and biomass synthesis. The hybrid glycolysis/OXPHOS phenotype facilitates metabolic plasticity of cancer cells and may be specifically associated with metastasis and therapy-resistance. Moreover, cancer cells can switch their metabolism phenotypes in response to external stimuli for better survival. Taking into account the metabolic heterogeneity and plasticity of cancer cells, therapies targeting cancer metabolic dependency in principle can be made more effective.

Bioblast editor: Gnaiger E

Jia 2018 Cells CORRECTION.png

Correction: FADH2 and Complex II

Ambiguity alert.png
FADH2 is shown as the substrate feeding electrons into Complex II (CII). This is wrong and requires correction - for details see Gnaiger (2024).
Gnaiger E (2024) Complex II ambiguities ― FADH2 in the electron transfer system. J Biol Chem 300:105470. https://doi.org/10.1016/j.jbc.2023.105470 - »Bioblast link«

Labels: Pathology: Cancer 



Enzyme: Complex II;succinate dehydrogenase