Gutierrez 2022 Cell Rep Med: Difference between revisions

From Bioblast
(Created page with "{{Publication |title=Gutierrez AD, Gao Z, Hamidi V, Zhu L, Saint Andre KB, Riggs K, Ruscheinsky M, Wang H, Yu Y, Miller C 3rd, Vasquez H, Taegtmeyer H, Kolonin MG (2022) Anti-...")
ย 
No edit summary
Line 1: Line 1:
{{Publication
{{Publication
|title=Gutierrez AD, Gao Z, Hamidi V, Zhu L, Saint Andre KB, Riggs K, Ruscheinsky M, Wang H, Yu Y, Miller C 3rd, Vasquez H, Taegtmeyer H, Kolonin MG (2022) Anti-diabetic effects of GLP1 analogs are mediated by thermogenic interleukin-6 signaling in adipocytes.
|title=Gutierrez AD, Gao Z, Hamidi V, Zhu L, Saint Andre KB, Riggs K, Ruscheinsky M, Wang H, Yu Y, Miller C 3rd, Vasquez H, Taegtmeyer H, Kolonin MG (2022) Anti-diabetic effects of GLP1 analogs are mediated by thermogenic interleukin-6 signaling in adipocytes. https://doi.org/10.1016/j.xcrm.2022.100813
|info=Cell Rep Med 3:100813. [https://pubmed.ncbi.nlm.nih.gov/36384099 PMID: 36384099 Open Access]
|info=Cell Rep Med 3:100813. [https://pubmed.ncbi.nlm.nih.gov/36384099 PMID: 36384099 Open Access]
|authors=Gutierrez AD, Gao Z, Hamidi V, Zhu L, Saint Andre KB, Riggs K, Ruscheinsky M, Wang H, Yu Y, Miller C 3rd, Vasquez H, Taegtmeyer H, Kolonin MG
|authors=Gutierrez AD, Gao Z, Hamidi V, Zhu L, Saint Andre KB, Riggs K, Ruscheinsky M, Wang H, Yu Y, Miller C 3rd, Vasquez H, Taegtmeyer H, Kolonin MG
Line 6: Line 6:
|journal=Cell Rep Med
|journal=Cell Rep Med
|abstract=Mechanisms underlying anti-diabetic effects of GLP1 analogs remain incompletely understood. We observed that in prediabetic humans exenatide treatment acutely induces interleukin-6 (IL-6) secretion by monocytes and IL-6 in systemic circulation. We hypothesized that GLP1 analogs signal through IL-6 in adipose tissue (AT) and used the mouse model to test if IL-6 receptor (IL-6R) signaling underlies the effects of the GLP1-IL-6 axis. We show that liraglutide transiently increases IL-6 in mouse circulation and IL-6R signaling in AT. Metronomic liraglutide treatment resulted in AT browning and thermogenesis linked with STAT3 activation. IL-6-blocking antibody treatment inhibited STAT3 activation in AT and suppressed liraglutide-induced increase in thermogenesis and glucose utilization. We show that adipose IL-6R knockout mice still display liraglutide-induced weight loss but lack thermogenic adipocyte browning and metabolism activation. We conclude that the anti-diabetic effects of GLP1 analogs are mediated by transient upregulation of IL-6, which activates canonical IL-6R signaling and thermogenesis.
|abstract=Mechanisms underlying anti-diabetic effects of GLP1 analogs remain incompletely understood. We observed that in prediabetic humans exenatide treatment acutely induces interleukin-6 (IL-6) secretion by monocytes and IL-6 in systemic circulation. We hypothesized that GLP1 analogs signal through IL-6 in adipose tissue (AT) and used the mouse model to test if IL-6 receptor (IL-6R) signaling underlies the effects of the GLP1-IL-6 axis. We show that liraglutide transiently increases IL-6 in mouse circulation and IL-6R signaling in AT. Metronomic liraglutide treatment resulted in AT browning and thermogenesis linked with STAT3 activation. IL-6-blocking antibody treatment inhibited STAT3 activation in AT and suppressed liraglutide-induced increase in thermogenesis and glucose utilization. We show that adipose IL-6R knockout mice still display liraglutide-induced weight loss but lack thermogenic adipocyte browning and metabolism activation. We conclude that the anti-diabetic effects of GLP1 analogs are mediated by transient upregulation of IL-6, which activates canonical IL-6R signaling and thermogenesis.
|keywords=GLP1, Brown adipocyte, Diabetes, Exenatide, Incretin, Interleukin-6, Liraglutide
|editor=[[Plangger M]]
|editor=[[Plangger M]]
}}
}}

Revision as of 14:15, 21 November 2022

Publications in the MiPMap
Gutierrez AD, Gao Z, Hamidi V, Zhu L, Saint Andre KB, Riggs K, Ruscheinsky M, Wang H, Yu Y, Miller C 3rd, Vasquez H, Taegtmeyer H, Kolonin MG (2022) Anti-diabetic effects of GLP1 analogs are mediated by thermogenic interleukin-6 signaling in adipocytes. https://doi.org/10.1016/j.xcrm.2022.100813

ยป Cell Rep Med 3:100813. PMID: 36384099 Open Access

Gutierrez AD, Gao Z, Hamidi V, Zhu L, Saint Andre KB, Riggs K, Ruscheinsky M, Wang H, Yu Y, Miller C 3rd, Vasquez H, Taegtmeyer H, Kolonin MG (2022) Cell Rep Med

Abstract: Mechanisms underlying anti-diabetic effects of GLP1 analogs remain incompletely understood. We observed that in prediabetic humans exenatide treatment acutely induces interleukin-6 (IL-6) secretion by monocytes and IL-6 in systemic circulation. We hypothesized that GLP1 analogs signal through IL-6 in adipose tissue (AT) and used the mouse model to test if IL-6 receptor (IL-6R) signaling underlies the effects of the GLP1-IL-6 axis. We show that liraglutide transiently increases IL-6 in mouse circulation and IL-6R signaling in AT. Metronomic liraglutide treatment resulted in AT browning and thermogenesis linked with STAT3 activation. IL-6-blocking antibody treatment inhibited STAT3 activation in AT and suppressed liraglutide-induced increase in thermogenesis and glucose utilization. We show that adipose IL-6R knockout mice still display liraglutide-induced weight loss but lack thermogenic adipocyte browning and metabolism activation. We conclude that the anti-diabetic effects of GLP1 analogs are mediated by transient upregulation of IL-6, which activates canonical IL-6R signaling and thermogenesis. โ€ข Keywords: GLP1, Brown adipocyte, Diabetes, Exenatide, Incretin, Interleukin-6, Liraglutide โ€ข Bioblast editor: Plangger M


Labels: MiParea: Respiration 





HRR: Oxygraph-2k 

2022-11 

Cookies help us deliver our services. By using our services, you agree to our use of cookies.