Bal 2012 PLOS ONE: Difference between revisions

From Bioblast
(Created page with "{{Publication |title=Bal W, Kurowska E, Maret W (2012) The final frontier of pH and the undiscovered country beyond. PLOS ONE 7(9):e45832. |info=https://doi.org/10.1371/journa...")
Β 
No edit summary
Β 
(4 intermediate revisions by the same user not shown)
Line 5: Line 5:
|year=2012
|year=2012
|journal=PLOS ONE
|journal=PLOS ONE
|abstract=The comparison of volumes of cells and subcellular structures with the pH values reported for them leads to a conflict with the definition of the pH scale. The pH scale is based on the ionic product of water, Kwβ€Š=β€Š[H+]Γ—[OHβˆ’]. We used Kw [in a reversed way] to calculate the number of undissociated H2O molecules required by this equilibrium constant to yield at least one of its daughter ions, H+ or OHβˆ’ at a given pH. In this way we obtained a formula that relates pH to the minimal volume VpH required to provide a physical meaning to Kw, (where NA is Avogadro’s number). For example, at pH 7 (neutral at 25 Β°C) VpHβ€Š=β€Š16.6 aL. Any deviation from neutral pH results in a larger VpH value. Our results indicate that many subcellular structures, including coated vesicles and lysosomes, are too small to contain free H+ ions at equilibrium, thus the definition of pH based on Kw is no longer valid. Larger subcellular structures, such as mitochondria, apparently contain only a few free H+ ions. These results indicate that pH fails to describe intracellular conditions, and that water appears to be dissociated too weakly to provide free H+ ions as a general source for biochemical reactions. Consequences of this finding are discussed.
|abstract=The comparison of volumes of cells and subcellular structures with the pH values reported for them leads to a conflict with the definition of the pH scale. The pH scale is based on the ionic product of water, ''K''<sub>w</sub>β€Š=β€Š[H<sup>+</sup>]Γ—[OH<sup>βˆ’</sup>]. We used ''K''<sub>w</sub> [in a reversed way] to calculate the number of undissociated H<sub>2</sub>O molecules required by this equilibrium constant to yield at least one of its daughter ions, H<sup>+</sup> or OH<sup>βˆ’</sup> at a given pH. In this way we obtained a formula that relates pH to the minimal volume ''V''<sub>pH</sub> required to provide a physical meaning to ''K''<sub>w</sub>, (where ''N''<sub>A</sub> is Avogadro’s number). For example, at pH 7 (neutral at 25 Β°C) ''V''<sub>pH</sub>β€Š=β€Š16.6 aL. Any deviation from neutral pH results in a larger ''V''<sub>pH</sub> value. Our results indicate that many subcellular structures, including coated vesicles and lysosomes, are too small to contain free H<sup>+</sup> ions at equilibrium, thus the definition of pH based on ''K''<sub>w</sub> is no longer valid. Larger subcellular structures, such as mitochondria, apparently contain only a few free H<sup>+</sup> ions. These results indicate that pH fails to describe intracellular conditions, and that water appears to be dissociated too weakly to provide free H<sup>+</sup> ions as a general source for biochemical reactions. Consequences of this finding are discussed.
|editor=Gnaiger E
|editor=Gnaiger E
}}
}}
== Cited by ==
{{Template:Cited by Gnaiger 2020 BEC MitoPathways}}
{{Labeling
{{Labeling
|preparations=Isolated mitochondria
|preparations=Isolated mitochondria
|topics=pH
|topics=pH
|additional=BEC 2020.2
}}
}}

Latest revision as of 16:51, 16 January 2021

Publications in the MiPMap
Bal W, Kurowska E, Maret W (2012) The final frontier of pH and the undiscovered country beyond. PLOS ONE 7(9):e45832.

Β» https://doi.org/10.1371/journal.pone.0045832

Bal W, Kurowska E, Maret W (2012) PLOS ONE

Abstract: The comparison of volumes of cells and subcellular structures with the pH values reported for them leads to a conflict with the definition of the pH scale. The pH scale is based on the ionic product of water, Kw = [H+]Γ—[OHβˆ’]. We used Kw [in a reversed way] to calculate the number of undissociated H2O molecules required by this equilibrium constant to yield at least one of its daughter ions, H+ or OHβˆ’ at a given pH. In this way we obtained a formula that relates pH to the minimal volume VpH required to provide a physical meaning to Kw, (where NA is Avogadro’s number). For example, at pH 7 (neutral at 25 Β°C) VpH = 16.6 aL. Any deviation from neutral pH results in a larger VpH value. Our results indicate that many subcellular structures, including coated vesicles and lysosomes, are too small to contain free H+ ions at equilibrium, thus the definition of pH based on Kw is no longer valid. Larger subcellular structures, such as mitochondria, apparently contain only a few free H+ ions. These results indicate that pH fails to describe intracellular conditions, and that water appears to be dissociated too weakly to provide free H+ ions as a general source for biochemical reactions. Consequences of this finding are discussed.

β€’ Bioblast editor: Gnaiger E

Cited by

Gnaiger 2020 BEC MitoPathways
Gnaiger E (2020) Mitochondrial pathways and respiratory control. An introduction to OXPHOS analysis. 5th ed. Bioenerg Commun 2020.2. https://doi.org/10.26124/bec:2020-0002



Labels:



Preparation: Isolated mitochondria 

Regulation: pH 



BEC 2020.2 

Cookies help us deliver our services. By using our services, you agree to our use of cookies.