Search by property

From Bioblast

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "Has abstract" with value "[[File:BEC.png|25px|link=https://doi.org/10.26124/bec:2022-0017]] https://doi.org/10.26124/bec:2022-0017<br> The parasite ''Trypanosoma brucei'' is the causative agent of sleeping sickness and involves an insect vector and a mammalian host through its complex life cycle. T. brucei mammalian bloodstream forms (BSF) exhibits unique metabolic features including: (''1'') reduced expression and activity of mitochondrial enzymes; (''2'') respiration mediated by the glycerol phosphate shuttle (GPSh) and the Trypanosome alternative oxidase (TAO) that is intrinsically uncoupled from generation of mitochondrial protonmotive force; (''3'') maintenance of mitochondrial membrane potential by ATP hydrolysis through the reversal of F1FO-ATP synthase activity; (''4'') strong reliance on glycolysis to meet their energy demands; (''5'') high susceptibility to oxidants. Here, we critically review the main metabolic features of BSF and provide a hypothesis to explain the unusual metabolic network and its biological significance for this parasite form. We postulate that intrinsically uncoupled respiration provided by the GPSh-TAO system acts as a preventive antioxidant defense by limiting mitochondrial superoxide production and complementing the NADPH-dependent scavenging antioxidant defenses to maintain redox balance. Given the uncoupled nature of the GPSh-TAO system, BSF avoids cell death processes by maintaining mitochondrial protonmotive force through the reversal of ATP synthase activity using the ATP generated by glycolysis. This unique β€œmetabolic design” in BSF has no biological parallel outside of trypanosomatids and highlights the enormous spanersity of the parasite mitochondrial processes to adapt to distinct environments. <br>". Since there have been only a few results, also nearby values are displayed.

Showing below up to 2 results starting with #1.

View (previous 50 | next 50) (20 | 50 | 100 | 250 | 500)


    

List of results

    • Alencar 2022 BEC  + ([[File:BEC.png|25px|link=https://doi.org/1 … [[File:BEC.png|25px|link=https://doi.org/10.26124/bec:2022-0017]] https://doi.org/10.26124/bec:2022-0017<br></br>The parasite ''Trypanosoma brucei'' is the causative agent of sleeping sickness and involves an insect vector and a mammalian host through its complex life cycle. T. brucei mammalian bloodstream forms (BSF) exhibits unique metabolic features including: (''1'') reduced expression and activity of mitochondrial enzymes; (''2'') respiration mediated by the glycerol phosphate shuttle (GPSh) and the Trypanosome alternative oxidase (TAO) that is intrinsically uncoupled from generation of mitochondrial protonmotive force; (''3'') maintenance of mitochondrial membrane potential by ATP hydrolysis through the reversal of F1FO-ATP synthase activity; (''4'') strong reliance on glycolysis to meet their energy demands; (''5'') high susceptibility to oxidants. Here, we critically review the main metabolic features of BSF and provide a hypothesis to explain the unusual metabolic network and its biological significance for this parasite form. We postulate that intrinsically uncoupled respiration provided by the GPSh-TAO system acts as a preventive antioxidant defense by limiting mitochondrial superoxide production and complementing the NADPH-dependent scavenging antioxidant defenses to maintain redox balance. Given the uncoupled nature of the GPSh-TAO system, BSF avoids cell death processes by maintaining mitochondrial protonmotive force through the reversal of ATP synthase activity using the ATP generated by glycolysis. This unique β€œmetabolic design” in BSF has no biological parallel outside of trypanosomatids and highlights the enormous diversity of the parasite mitochondrial processes to adapt to distinct environments.</br><br>rocesses to adapt to distinct environments. <br>)
    Cookies help us deliver our services. By using our services, you agree to our use of cookies.