Search by property

From Bioblast

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "Has abstract" with value "Tumour cells are characterized by accelerated growth usually accompanied by up-regulated pathways that ultimately increase the rate of ATP production. These cells can suffer metabolic reprogramming, resulting in distinct bioenergetic phenotypes, generally enhancing glycolysis channelled to lactate production [1]. It has been highlighted that maintenance of energy homeostasis (both oxidative and glycolytic metabolism) is essential for tumour development control [2]. In this context we have investigated whether sodium butyrate (NaB), a histone deacetylase inhibitor, alters the energy metabolism in lung cancer cells (H460) and if these effects are related to differentiation, growth arrest and apoptosis observed in these cells exposed to 10mM NaB during 24 hours. We have shown that in this experimental condition, cells display reduced glycolytic flux indicated by lactate production. Results with high-resolution respirometry show increased oxidative metabolism leading to increased rates of oxygen consumption coupled to ATP synthesis. Mitochondria morphology, characterized by electron microscopy, showed increased size in the treated cells. These results can be associated to mitochondrial fusion because we have detected an increase in mitofusin mRNA. These alterations on the energetic metabolism after treatment with NaB suggest that there is an increase in mitochondrial function and enhanced oxidative metabolism. 1. Kroemer G, Pouyssegur J (2008) Tumor cell metabolism: cancer's Achilles' heel. Cancer Cell 13: 472-482. 2. Xu WS, Parmigiani RB, Marks PA (2007) Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene 26: 5541-5552.". Since there have been only a few results, also nearby values are displayed.

Showing below up to 2 results starting with #1.

View (previous 50 | next 50) (20 | 50 | 100 | 250 | 500)


    

List of results

    • Amoedo 2010 Abstract MiP2010  + (Tumour cells are characterized by acceleraTumour cells are characterized by accelerated growth usually accompanied by up-regulated pathways that ultimately increase the rate of ATP production. These cells can suffer metabolic reprogramming, resulting in distinct bioenergetic phenotypes, generally enhancing glycolysis channelled to lactate production [1]. It has been highlighted that maintenance of energy homeostasis (both oxidative and glycolytic metabolism) is essential for tumour development control [2]. In this context we have investigated whether sodium butyrate (NaB), a histone deacetylase inhibitor, alters the energy metabolism in lung cancer cells (H460) and if these effects are related to differentiation, growth arrest and apoptosis observed in these cells exposed to 10mM NaB during 24 hours. We have shown that in this experimental condition, cells display reduced glycolytic flux indicated by lactate production. Results with high-resolution respirometry show increased oxidative metabolism leading to increased rates of oxygen consumption coupled to ATP synthesis. Mitochondria morphology, characterized by electron microscopy, showed increased size in the treated cells. These results can be associated to mitochondrial fusion because we have detected an increase in mitofusin mRNA. These alterations on the energetic metabolism after treatment with NaB suggest that there is an increase in mitochondrial function and enhanced oxidative metabolism.</br></br>1. Kroemer G, Pouyssegur J (2008) Tumor cell metabolism: cancer's Achilles' heel. Cancer Cell 13: 472-482.</br></br>2. Xu WS, Parmigiani RB, Marks PA (2007) Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene 26: 5541-5552.hanisms of action. Oncogene 26: 5541-5552.)
    Cookies help us deliver our services. By using our services, you agree to our use of cookies.