Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Zanou 2021 Nat Commun

From Bioblast
Revision as of 18:38, 15 December 2021 by Plangger Mario (talk | contribs) (Created page with "{{Publication |title=Zanou N, Dridi H, Reiken S, Imamura de Lima T, Donnelly C, De Marchi U, Ferrini M, Vidal J, Sittenfeld L, Feige JN, Garcia-Roves PM, Lopez-Mejia IC, Marks...")
(diff) ← Older revision | Latest revision (diff) | Newer revision β†’ (diff)
Publications in the MiPMap
Zanou N, Dridi H, Reiken S, Imamura de Lima T, Donnelly C, De Marchi U, Ferrini M, Vidal J, Sittenfeld L, Feige JN, Garcia-Roves PM, Lopez-Mejia IC, Marks AR, Auwerx J, Kayser B, Place N (2021) Acute RyR1 Ca<sup>2+</sup> leak enhances NADH-linked mitochondrial respiratory capacity. Nat Commun 12:7219.

Β» PMID: 34893614 Open Access

Zanou N, Dridi H, Reiken S, Imamura de Lima T, Donnelly C, De Marchi U, Ferrini M, Vidal J, Sittenfeld L, Feige JN, Garcia-Roves PM, Lopez-Mejia IC, Marks AR, Auwerx J, Kayser B, Place N (2021) Nat Commun

Abstract: Sustained ryanodine receptor (RyR) Ca2+ leak is associated with pathological conditions such as heart failure or skeletal muscle weakness. We report that a single session of sprint interval training (SIT), but not of moderate intensity continuous training (MICT), triggers RyR1 protein oxidation and nitrosylation leading to calstabin1 dissociation in healthy human muscle and in in vitro SIT models (simulated SIT or S-SIT). This is accompanied by decreased sarcoplasmic reticulum Ca2+ content, increased levels of mitochondrial oxidative phosphorylation proteins, supercomplex formation and enhanced NADH-linked mitochondrial respiratory capacity. Mechanistically, (S-)SIT increases mitochondrial Ca2+ uptake in mouse myotubes and muscle fibres, and decreases pyruvate dehydrogenase phosphorylation in human muscle and mouse myotubes. Countering Ca2+ leak or preventing mitochondrial Ca2+ uptake blunts S-SIT-induced adaptations, a result supported by proteomic analyses. Here we show that triggering acute transient Ca2+ leak through RyR1 in healthy muscle may contribute to the multiple health promoting benefits of exercise.

β€’ Bioblast editor: Plangger M


Labels: