Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Difference between revisions of "Gnaiger 2023 MitoFit CII"

From Bioblast
Line 66: Line 66:


== Beyond version 6 ==
== Beyond version 6 ==
  ''Last update: 2023-11-06''
  ''Last update: 2023-11-20''


=== SDH: FAD ⟶ FADH<sub>2</sub>; CII: FADH<sub>2</sub> ⟶ FAD ===
=== SDH: FAD ⟶ FADH<sub>2</sub>; CII: FADH<sub>2</sub> ⟶ FAD ===
Line 72: Line 72:
:::::: [[File:Alzaid 2015 Springer CORRECTION.png|400px|link=Alzaid 2015 Springer]]
:::::: [[File:Alzaid 2015 Springer CORRECTION.png|400px|link=Alzaid 2015 Springer]]
:::: '''1.1''' Alzaid F, Patel VB, Preedy VR (2015) Biomarkers of oxidative stress in blood. In: Preedy V, Patel V (eds) General methods in biomarker research and their applications. Biomarkers in disease: methods, discoveries and applications. '''Springer''', Dordrecht. - [[Alzaid 2015 Springer |»Bioblast link«]]
:::: '''1.1''' Alzaid F, Patel VB, Preedy VR (2015) Biomarkers of oxidative stress in blood. In: Preedy V, Patel V (eds) General methods in biomarker research and their applications. Biomarkers in disease: methods, discoveries and applications. '''Springer''', Dordrecht. - [[Alzaid 2015 Springer |»Bioblast link«]]
:S1
 


:::::: [[File:Arnold, Finley 2022 CORRECTION.png|400px|link=Arnold 2023 J Biol Chem]]
:::::: [[File:Arnold, Finley 2022 CORRECTION.png|400px|link=Arnold 2023 J Biol Chem]]
:::: '''1.2''' Arnold PK, Finley LWS (2023) Regulation and function of the mammalian tricarboxylic acid cycle. '''J Biol Chem''' 299:102838. - [[Arnold 2023 J Biol Chem |»Bioblast link«]]
:::: '''1.2''' Arnold PK, Finley LWS (2023) Regulation and function of the mammalian tricarboxylic acid cycle. '''J Biol Chem''' 299:102838. - [[Arnold 2023 J Biol Chem |»Bioblast link«]]
:S1
 


:::::: [[File:Aye 2022 Am J Obstet Gynecol CORRECTION.png|400px|link=Aye 2022 Am J Obstet Gynecol]]
:::::: [[File:Aye 2022 Am J Obstet Gynecol CORRECTION.png|400px|link=Aye 2022 Am J Obstet Gynecol]]
:::: '''1.3''' Aye ILMH, Aiken CE, Charnock-Jones DS, Smith GCS (2022) Placental energy metabolism in health and disease-significance of development and implications for preeclampsia. '''Am J Obstet Gynecol''' 226:S928-44. - [[Aye 2022 Am J Obstet Gynecol |»Bioblast link«]]
:::: '''1.3''' Aye ILMH, Aiken CE, Charnock-Jones DS, Smith GCS (2022) Placental energy metabolism in health and disease-significance of development and implications for preeclampsia. '''Am J Obstet Gynecol''' 226:S928-44. - [[Aye 2022 Am J Obstet Gynecol |»Bioblast link«]]
:S1
 


:::::: [[File:Balasubramaniam 2020 J Transl Genet Genom CORRECTION.png|400px|link=Balasubramaniam 2020 J Transl Genet Genom]]
:::::: [[File:Balasubramaniam 2020 J Transl Genet Genom CORRECTION.png|400px|link=Balasubramaniam 2020 J Transl Genet Genom]]
:::: '''1.4''' Balasubramaniam S, Yaplito-Lee J (2020) Riboflavin metabolism: role in mitochondrial function. '''J Transl Genet Genom''' 4:285-306. - [[Balasubramaniam 2020 J Transl Genet Genom |»Bioblast link«]]
:::: '''1.4''' Balasubramaniam S, Yaplito-Lee J (2020) Riboflavin metabolism: role in mitochondrial function. '''J Transl Genet Genom''' 4:285-306. - [[Balasubramaniam 2020 J Transl Genet Genom |»Bioblast link«]]
:S1
 


:::::: [[File:Begriche 2011 J Hepatol CORRECTION.png|250px|link=Begriche 2011 J Hepatol]]
:::::: [[File:Begriche 2011 J Hepatol CORRECTION.png|250px|link=Begriche 2011 J Hepatol]]
:::: '''1.5''' Begriche K, Massart J, Robin MA, Borgne-Sanchez A, Fromenty B (2011) Drug-induced toxicity on mitochondria and lipid metabolism: mechanistic diversity and deleterious consequences for the liver. '''J Hepatol''' 54:773-94. - [[Begriche 2011 J Hepatol |»Bioblast link«]]
:::: '''1.5''' Begriche K, Massart J, Robin MA, Borgne-Sanchez A, Fromenty B (2011) Drug-induced toxicity on mitochondria and lipid metabolism: mechanistic diversity and deleterious consequences for the liver. '''J Hepatol''' 54:773-94. - [[Begriche 2011 J Hepatol |»Bioblast link«]]
:S1
 


:::::: [[File:Begum 2023 WIREs Mech Dis CORRECTION.png|400px|link=Begum 2023 WIREs Mech Dis]]
:::::: [[File:Begum 2023 WIREs Mech Dis CORRECTION.png|400px|link=Begum 2023 WIREs Mech Dis]]
:::: '''1.6''' Begum HM, Shen K (2023) Intracellular and microenvironmental regulation of mitochondrial membrane potential in cancer cells. '''WIREs Mech Dis''' 15:e1595. - [[Begum 2023 WIREs Mech Dis |»Bioblast link«]]
:::: '''1.6''' Begum HM, Shen K (2023) Intracellular and microenvironmental regulation of mitochondrial membrane potential in cancer cells. '''WIREs Mech Dis''' 15:e1595. - [[Begum 2023 WIREs Mech Dis |»Bioblast link«]]
:S1
 


:::::: [[File:Beier 2015 FASEB J CORRECTION.png|300px|link=Beier 2015 FASEB J]]
:::::: [[File:Beier 2015 FASEB J CORRECTION.png|300px|link=Beier 2015 FASEB J]]
:::: '''1.7''' Beier UH, Angelin A, Akimova T, Wang L, Liu Y, Xiao H, Koike MA, Hancock SA, Bhatti TR, Han R, Jiao J, Veasey SC, Sims CA, Baur JA, Wallace DC, Hancock WW (2015) Essential role of mitochondrial energy metabolism in Foxp3⁺ T-regulatory cell function and allograft survival. '''FASEB J''' 29:2315-26. - [[Beier 2015 FASEB J |»Bioblast link«]]
:::: '''1.7''' Beier UH, Angelin A, Akimova T, Wang L, Liu Y, Xiao H, Koike MA, Hancock SA, Bhatti TR, Han R, Jiao J, Veasey SC, Sims CA, Baur JA, Wallace DC, Hancock WW (2015) Essential role of mitochondrial energy metabolism in Foxp3⁺ T-regulatory cell function and allograft survival. '''FASEB J''' 29:2315-26. - [[Beier 2015 FASEB J |»Bioblast link«]]
:S1
 


:::::: [[File:Bhargava 2017 Nat Rev Nephrol CORRECTION.png|400px|link=Bhargava 2017 Nat Rev Nephrol]]
:::::: [[File:Bhargava 2017 Nat Rev Nephrol CORRECTION.png|400px|link=Bhargava 2017 Nat Rev Nephrol]]
:::: '''1.8''' Bhargava P, Schnellmann RG (2017) Mitochondrial energetics in the kidney. '''Nat Rev Nephrol''' 13:629-46. - [[Bhargava 2017 Nat Rev Nephrol |»Bioblast link«]]
:::: '''1.8''' Bhargava P, Schnellmann RG (2017) Mitochondrial energetics in the kidney. '''Nat Rev Nephrol''' 13:629-46. - [[Bhargava 2017 Nat Rev Nephrol |»Bioblast link«]]
:S1
 


:::::: [[File:Boukalova 2020 Biochim Biophys Acta Mol Basis Dis CORRECTION.png|400px|link=Boukalova 2020 Biochim Biophys Acta Mol Basis Dis]]
:::::: [[File:Boukalova 2020 Biochim Biophys Acta Mol Basis Dis CORRECTION.png|400px|link=Boukalova 2020 Biochim Biophys Acta Mol Basis Dis]]
:::: '''1.9''' Boukalova S, Hubackova S, Milosevic M, Ezrova Z, Neuzil J, Rohlena J (2020) Dihydroorotate dehydrogenase in oxidative phosphorylation and cancer. '''Biochim Biophys Acta Mol Basis Dis''' 1866:165759. - [[Boukalova 2020 Biochim Biophys Acta Mol Basis Dis |»Bioblast link«]]
:::: '''1.9''' Boukalova S, Hubackova S, Milosevic M, Ezrova Z, Neuzil J, Rohlena J (2020) Dihydroorotate dehydrogenase in oxidative phosphorylation and cancer. '''Biochim Biophys Acta Mol Basis Dis''' 1866:165759. - [[Boukalova 2020 Biochim Biophys Acta Mol Basis Dis |»Bioblast link«]]
:S1
 


:::::: [[File:Camara 2011 Front Physiol CORRECTION.png|400px|link=Camara 2011 Front Physiol]]
:::::: [[File:Camara 2011 Front Physiol CORRECTION.png|400px|link=Camara 2011 Front Physiol]]
:::: '''1.10''' Camara AK, Bienengraeber M, Stowe DF (2011) Mitochondrial approaches to protect against cardiac ischemia and reperfusion injury. '''Front Physiol''' 2:13. - [[Camara 2011 Front Physiol |»Bioblast link«]]
:::: '''1.10''' Camara AK, Bienengraeber M, Stowe DF (2011) Mitochondrial approaches to protect against cardiac ischemia and reperfusion injury. '''Front Physiol''' 2:13. - [[Camara 2011 Front Physiol |»Bioblast link«]]
:S1
 


:::::: [[File:Chakrabarty 2021 Cell Stem Cell 1 CORRECTION.png|400px|link=Chakrabarty 2021 Cell Stem Cell]]
:::::: [[File:Chakrabarty 2021 Cell Stem Cell 1 CORRECTION.png|400px|link=Chakrabarty 2021 Cell Stem Cell]]
:::: '''1.11''' Chakrabarty RP, Chandel NS (2021) Mitochondria as signaling organelles control mammalian stem cell fate. '''Cell Stem Cell''' 28:394-408. - [[Chakrabarty 2021 Cell Stem Cell |»Bioblast link«]]
:::: '''1.11''' Chakrabarty RP, Chandel NS (2021) Mitochondria as signaling organelles control mammalian stem cell fate. '''Cell Stem Cell''' 28:394-408. - [[Chakrabarty 2021 Cell Stem Cell |»Bioblast link«]]
:S1
 


:::: [[File:Chandel 2021 Cold Spring Harb Perspect Biol CORRECTION.png|600px|link=Chandel 2021 Cold Spring Harb Perspect Biol]]  
:::: [[File:Chandel 2021 Cold Spring Harb Perspect Biol CORRECTION.png|600px|link=Chandel 2021 Cold Spring Harb Perspect Biol]]  
:::: '''1.12, 1.13''' Chandel NS (2021) Mitochondria. '''Cold Spring Harb Perspect Biol''' 13:a040543. - [[Chandel 2021 Cold Spring Harb Perspect Biol |»Bioblast link«]]  
:::: '''1.12, 1.13''' Chandel NS (2021) Mitochondria. '''Cold Spring Harb Perspect Biol''' 13:a040543. - [[Chandel 2021 Cold Spring Harb Perspect Biol |»Bioblast link«]]  
:S1
 


:::::: [[File:Cogliati 2021 Biochem Soc Trans CORRECTION.png|400px|link=Cogliati 2021 Biochem Soc Trans]]
:::::: [[File:Cogliati 2021 Biochem Soc Trans CORRECTION.png|400px|link=Cogliati 2021 Biochem Soc Trans]]
:::: '''1.14''' Cogliati S, Cabrera-Alarcón JL, Enriquez JA (2021) Regulation and functional role of the electron transport chain supercomplexes. '''Biochem Soc Trans''' 49:2655-68. - [[Cogliati 2021 Biochem Soc Trans |»Bioblast link«]]
:::: '''1.14''' Cogliati S, Cabrera-Alarcón JL, Enriquez JA (2021) Regulation and functional role of the electron transport chain supercomplexes. '''Biochem Soc Trans''' 49:2655-68. - [[Cogliati 2021 Biochem Soc Trans |»Bioblast link«]]
:S1
 


:::::: [[File:De Beauchamp 2022 Leukemia CORRECTION.png|400px|link=De Beauchamp 2022 Leukemia]]
:::::: [[File:De Beauchamp 2022 Leukemia CORRECTION.png|400px|link=De Beauchamp 2022 Leukemia]]
:::: '''1.15''' de Beauchamp L, Himonas E, Helgason GV (2022) Mitochondrial metabolism as a potential therapeutic target in myeloid leukaemia. '''Leukemia''' 36:1-12. - [[De Beauchamp 2022 Leukemia |»Bioblast link«]]
:::: '''1.15''' de Beauchamp L, Himonas E, Helgason GV (2022) Mitochondrial metabolism as a potential therapeutic target in myeloid leukaemia. '''Leukemia''' 36:1-12. - [[De Beauchamp 2022 Leukemia |»Bioblast link«]]
:S1
 


:::::: [[File:DeBerardinis, Chandel 2016 CORRECTION.png|600px|link=DeBerardinis 2016 Sci Adv]]
:::::: [[File:DeBerardinis, Chandel 2016 CORRECTION.png|600px|link=DeBerardinis 2016 Sci Adv]]
:::: '''1.16''' DeBerardinis RJ, Chandel NS (2016) Fundamentals of cancer metabolism. '''Sci Adv''' 2:e1600200. - [[DeBerardinis 2016 Sci Adv |»Bioblast link«]]
:::: '''1.16''' DeBerardinis RJ, Chandel NS (2016) Fundamentals of cancer metabolism. '''Sci Adv''' 2:e1600200. - [[DeBerardinis 2016 Sci Adv |»Bioblast link«]]
:S1
 


:::::: [[File:Du 2023 bioRxiv CORRECTION.png|400px|link=Du 2023 bioRxiv]]
:::::: [[File:Du 2023 bioRxiv CORRECTION.png|400px|link=Du 2023 bioRxiv]]
:::: '''1.17''' Du J, Sudlow LC, Shahverdi K, Zhou H, Michie M, Schindler TH, Mitchell JD, Mollah S, Berezin MY (2023) Oxaliplatin-induced cardiotoxicity in mice is connected to the changes in energy metabolism in the heart tissue. '''bioRxiv''' 2023.05.24.542198. - [[Du 2023 bioRxiv |»Bioblast link«]]
:::: '''1.17''' Du J, Sudlow LC, Shahverdi K, Zhou H, Michie M, Schindler TH, Mitchell JD, Mollah S, Berezin MY (2023) Oxaliplatin-induced cardiotoxicity in mice is connected to the changes in energy metabolism in the heart tissue. '''bioRxiv''' 2023.05.24.542198. - [[Du 2023 bioRxiv |»Bioblast link«]]
:S1
 


:::::: [[File:Esparza-Molto 2020 Antioxid Redox Signal CORRECTION.png|400px|link=Esparza-Molto 2020 Antioxid Redox Signal]]
:::::: [[File:Esparza-Molto 2020 Antioxid Redox Signal CORRECTION.png|400px|link=Esparza-Molto 2020 Antioxid Redox Signal]]
:::: '''1.18''' Esparza-Moltó PB, Cuezva JM (2020) Reprogramming oxidative phosphorylation in cancer: a role for RNA-binding proteins. '''Antioxid Redox Signal''' 33:927-45. - [[Esparza-Molto 2020 Antioxid Redox Signal |»Bioblast link«]]
:::: '''1.18''' Esparza-Moltó PB, Cuezva JM (2020) Reprogramming oxidative phosphorylation in cancer: a role for RNA-binding proteins. '''Antioxid Redox Signal''' 33:927-45. - [[Esparza-Molto 2020 Antioxid Redox Signal |»Bioblast link«]]
:S1
 


:::::: [[File:Ezeani 2020 Front Biosci (Schol Ed) CORRECTION.png|400px|link=Ezeani 2020 Front Biosci (Schol Ed)]]
:::::: [[File:Ezeani 2020 Front Biosci (Schol Ed) CORRECTION.png|400px|link=Ezeani 2020 Front Biosci (Schol Ed)]]
:::: '''1.19''' Ezeani M (2020) Aberrant cardiac metabolism leads to cardiac arrhythmia. '''Front Biosci (Schol Ed)''' 12:200-21. - [[Ezeani 2020 Front Biosci (Schol Ed) |»Bioblast link«]]
:::: '''1.19''' Ezeani M (2020) Aberrant cardiac metabolism leads to cardiac arrhythmia. '''Front Biosci (Schol Ed)''' 12:200-21. - [[Ezeani 2020 Front Biosci (Schol Ed) |»Bioblast link«]]
:S1
 


:::::: [[File:Fahlbusch 2022 Int J Mol Sci CORRECTION.png|250px|link=Fahlbusch 2022 Int J Mol Sci]]
:::::: [[File:Fahlbusch 2022 Int J Mol Sci CORRECTION.png|250px|link=Fahlbusch 2022 Int J Mol Sci]]
:::: '''1.20''' Fahlbusch P, Nikolic A, Hartwig S, Jacob S, Kettel U, Köllmer C, Al-Hasani H, Lehr S, Müller-Wieland D, Knebel B, Kotzka J (2022) Adaptation of oxidative phosphorylation machinery compensates for hepatic lipotoxicity in early stages of MAFLD. '''Int J Mol Sci''' 23:6873. - [[Fahlbusch 2022 Int J Mol Sci |»Bioblast link«]]
:::: '''1.20''' Fahlbusch P, Nikolic A, Hartwig S, Jacob S, Kettel U, Köllmer C, Al-Hasani H, Lehr S, Müller-Wieland D, Knebel B, Kotzka J (2022) Adaptation of oxidative phosphorylation machinery compensates for hepatic lipotoxicity in early stages of MAFLD. '''Int J Mol Sci''' 23:6873. - [[Fahlbusch 2022 Int J Mol Sci |»Bioblast link«]]
:S1
 


:::::: [[File:Fink 2018 J Biol Chem CORRECTION.png|400px|link=Fink 2018 J Biol Chem]]
:::::: [[File:Fink 2018 J Biol Chem CORRECTION.png|400px|link=Fink 2018 J Biol Chem]]
:::: '''1.21''' Fink BD, Bai F, Yu L, Sheldon RD, Sharma A, Taylor EB, Sivitz WI (2018) Oxaloacetic acid mediates ADP-dependent inhibition of mitochondrial complex II-driven respiration. '''J Biol Chem''' 293:19932-41. - [[Fink 2018 J Biol Chem |»Bioblast link«]]
:::: '''1.21''' Fink BD, Bai F, Yu L, Sheldon RD, Sharma A, Taylor EB, Sivitz WI (2018) Oxaloacetic acid mediates ADP-dependent inhibition of mitochondrial complex II-driven respiration. '''J Biol Chem''' 293:19932-41. - [[Fink 2018 J Biol Chem |»Bioblast link«]]
:S1
 


:::::: [[File:Fromenty 2023 J Hepatol CORRECTION.png|250px|link=Fromenty 2023 J Hepatol]]
:::::: [[File:Fromenty 2023 J Hepatol CORRECTION.png|250px|link=Fromenty 2023 J Hepatol]]
:::: '''1.22''' Fromenty B, Roden M (2023) Mitochondrial alterations in fatty liver diseases. '''J Hepatol''' 78:415-29. - [[Fromenty 2023 J Hepatol |»Bioblast link«]]
:::: '''1.22''' Fromenty B, Roden M (2023) Mitochondrial alterations in fatty liver diseases. '''J Hepatol''' 78:415-29. - [[Fromenty 2023 J Hepatol |»Bioblast link«]]
:S1
 


:::::: [[File:Gammon 2019 Cells CORRECTION.png|400px|link=Gammon 2019 Cells]]
:::::: [[File:Gammon 2019 Cells CORRECTION.png|400px|link=Gammon 2019 Cells]]
:::: '''1.23''' Gammon ST, Pisaneschi F, Bandi ML, Smith MG, Sun Y, Rao Y, Muller F, Wong F, De Groot J, Ackroyd J, Mawlawi O, Davies MA, Gopal YNV, Di Francesco ME, Marszalek JR, Dewhirst M, Piwnica-Worms D (2019) Mechanism-specific pharmacodynamics of a novel Complex-I inhibitor quantified by imaging reversal of consumptive hypoxia with [18F]FAZA PET ''in vivo''. '''Cells''' 8:1487. - [[Gammon 2019 Cells |»Bioblast link«]]
:::: '''1.23''' Gammon ST, Pisaneschi F, Bandi ML, Smith MG, Sun Y, Rao Y, Muller F, Wong F, De Groot J, Ackroyd J, Mawlawi O, Davies MA, Gopal YNV, Di Francesco ME, Marszalek JR, Dewhirst M, Piwnica-Worms D (2019) Mechanism-specific pharmacodynamics of a novel Complex-I inhibitor quantified by imaging reversal of consumptive hypoxia with [18F]FAZA PET ''in vivo''. '''Cells''' 8:1487. - [[Gammon 2019 Cells |»Bioblast link«]]
:S1
 


:::::: [[File:Goetzman 2011 Prog Mol Biol Transl Sci CORRECTION.png|400px|link=Goetzman 2011 Prog Mol Biol Transl Sci]]
:::::: [[File:Goetzman 2011 Prog Mol Biol Transl Sci CORRECTION.png|400px|link=Goetzman 2011 Prog Mol Biol Transl Sci]]
:::: '''1.24''' Goetzman ES (2011) Modeling disorders of fatty acid metabolism in the mouse. '''Prog Mol Biol Transl Sci''' 100:389-417. - [[Goetzman 2011 Prog Mol Biol Transl Sci |»Bioblast link«]]
:::: '''1.24''' Goetzman ES (2011) Modeling disorders of fatty acid metabolism in the mouse. '''Prog Mol Biol Transl Sci''' 100:389-417. - [[Goetzman 2011 Prog Mol Biol Transl Sci |»Bioblast link«]]
:S1
 


:::::: [[File:Hamanaka 2013 Cell Logist CORRECTION.png|400px|link=Hamanaka 2013 Cell Logist]]
:::::: [[File:Hamanaka 2013 Cell Logist CORRECTION.png|400px|link=Hamanaka 2013 Cell Logist]]
:::: '''1.25''' Hamanaka RB, Chandel NS (2013) Mitochondrial metabolism as a regulator of keratinocyte differentiation. '''Cell Logist''' 3:e25456. - [[Hamanaka 2013 Cell Logist |»Bioblast link«]]
:::: '''1.25''' Hamanaka RB, Chandel NS (2013) Mitochondrial metabolism as a regulator of keratinocyte differentiation. '''Cell Logist''' 3:e25456. - [[Hamanaka 2013 Cell Logist |»Bioblast link«]]
:S1
 


:::::: [[File:Han 2021 Am J Respir Cell Mol Biol CORRECTION.png|400px|link=Han 2021 Am J Respir Cell Mol Biol]]
:::::: [[File:Han 2021 Am J Respir Cell Mol Biol CORRECTION.png|400px|link=Han 2021 Am J Respir Cell Mol Biol]]
:::: '''1.26''' Han S, Chandel NS (2021) Lessons from cancer metabolism for pulmonary arterial hypertension and fibrosis. '''Am J Respir Cell Mol Biol''' 65:134-45. - [[Han 2021 Am J Respir Cell Mol Biol |»Bioblast link«]]
:::: '''1.26''' Han S, Chandel NS (2021) Lessons from cancer metabolism for pulmonary arterial hypertension and fibrosis. '''Am J Respir Cell Mol Biol''' 65:134-45. - [[Han 2021 Am J Respir Cell Mol Biol |»Bioblast link«]]
:S1
 


:::::: [[File:Hinder 2019 Sci Rep CORRECTION.png|400px|link=Hinder 2019 Sci Rep]]
:::::: [[File:Hinder 2019 Sci Rep CORRECTION.png|400px|link=Hinder 2019 Sci Rep]]
:::: '''1.27''' Hinder LM, Sas KM, O'Brien PD, Backus C, Kayampilly P, Hayes JM, Lin CM, Zhang H, Shanmugam S, Rumora AE, Abcouwer SF, Brosius FC 3rd, Pennathur S, Feldman EL (2019) Mitochondrial uncoupling has no effect on microvascular complications in type 2 diabetes. '''Sci Rep''' 9:881. - [[Hinder 2019 Sci Rep |»Bioblast link«]]
:::: '''1.27''' Hinder LM, Sas KM, O'Brien PD, Backus C, Kayampilly P, Hayes JM, Lin CM, Zhang H, Shanmugam S, Rumora AE, Abcouwer SF, Brosius FC 3rd, Pennathur S, Feldman EL (2019) Mitochondrial uncoupling has no effect on microvascular complications in type 2 diabetes. '''Sci Rep''' 9:881. - [[Hinder 2019 Sci Rep |»Bioblast link«]]
:S1
 


:::::: [[File:Lakovou 2022 Front Aging Neurosci CORRECTION.png|400px|link=Iakovou 2022 Front Aging Neurosci]]
:::::: [[File:Lakovou 2022 Front Aging Neurosci CORRECTION.png|400px|link=Iakovou 2022 Front Aging Neurosci]]
:::: '''1.28''' Iakovou E, Kourti M (2022) A comprehensive overview of the complex role of oxidative stress in aging, the contributing environmental stressors and emerging antioxidant therapeutic interventions. '''Front Aging Neurosci''' 14:827900. - [[Iakovou 2022 Front Aging Neurosci |»Bioblast link«]]
:::: '''1.28''' Iakovou E, Kourti M (2022) A comprehensive overview of the complex role of oxidative stress in aging, the contributing environmental stressors and emerging antioxidant therapeutic interventions. '''Front Aging Neurosci''' 14:827900. - [[Iakovou 2022 Front Aging Neurosci |»Bioblast link«]]
:S1
 


:::::: [[File:Intlekofer 2019 Nat Metab CORRECTION.png|400px|link=Intlekofer 2019 Nat Metab]]
:::::: [[File:Intlekofer 2019 Nat Metab CORRECTION.png|400px|link=Intlekofer 2019 Nat Metab]]
:::: '''1.29''' Intlekofer AM, Finley LWS (2019) Metabolic signatures of cancer cells and stem cells. '''Nat Metab''' 1:177-88. - [[Intlekofer 2019 Nat Metab |»Bioblast link«]]
:::: '''1.29''' Intlekofer AM, Finley LWS (2019) Metabolic signatures of cancer cells and stem cells. '''Nat Metab''' 1:177-88. - [[Intlekofer 2019 Nat Metab |»Bioblast link«]]
:S1
 


:::::: [[File:Jaramillo-Jimenez 2023 Mitochondrion CORRECTION.png|400px|link=Jaramillo-Jimenez 2023 Mitochondrion]]
:::::: [[File:Jaramillo-Jimenez 2023 Mitochondrion CORRECTION.png|400px|link=Jaramillo-Jimenez 2023 Mitochondrion]]
:::: '''1.30''' Jaramillo-Jimenez A, Giil LM, Borda MG, Tovar-Rios DA, Kristiansen KA, Bruheim P, Aarsland D, Barreto GE, Berge RK (2023) Serum TCA cycle metabolites in Lewy bodies dementia and Alzheimer's disease: network analysis and cognitive prognosis. '''Mitochondrion''' 71:17-25. - [[Jaramillo-Jimenez 2023 Mitochondrion |»Bioblast link«]]
:::: '''1.30''' Jaramillo-Jimenez A, Giil LM, Borda MG, Tovar-Rios DA, Kristiansen KA, Bruheim P, Aarsland D, Barreto GE, Berge RK (2023) Serum TCA cycle metabolites in Lewy bodies dementia and Alzheimer's disease: network analysis and cognitive prognosis. '''Mitochondrion''' 71:17-25. - [[Jaramillo-Jimenez 2023 Mitochondrion |»Bioblast link«]]
:S1
 


:::::: [[File:Koopman 2016 Nat Protoc CORRECTION.png|400px|link=Koopman 2016 Nat Protoc]]
:::::: [[File:Koopman 2016 Nat Protoc CORRECTION.png|400px|link=Koopman 2016 Nat Protoc]]
:::: '''1.31''' Koopman M, Michels H, Dancy BM, Kamble R, Mouchiroud L, Auwerx J, Nollen EA, Houtkooper RH (2016) A screening-based platform for the assessment of cellular respiration in ''Caenorhabditis elegans''. '''Nat Protoc''' 11:1798-816. - [[Koopman 2016 Nat Protoc |»Bioblast link«]]
:::: '''1.31''' Koopman M, Michels H, Dancy BM, Kamble R, Mouchiroud L, Auwerx J, Nollen EA, Houtkooper RH (2016) A screening-based platform for the assessment of cellular respiration in ''Caenorhabditis elegans''. '''Nat Protoc''' 11:1798-816. - [[Koopman 2016 Nat Protoc |»Bioblast link«]]
:S1
 


:::::: [[File:Liufu 2023 Front Physiol CORRECTION.png|400px|link=Liufu 2023 Front Physiol]]
:::::: [[File:Liufu 2023 Front Physiol CORRECTION.png|400px|link=Liufu 2023 Front Physiol]]
:::: '''1.32''' Liufu T, Yu H, Yu J, Yu M, Tian Y, Ou Y, Deng J, Xing G, Wang Z (2023) Complex I deficiency in m.3243A>G fibroblasts is alleviated by reducing NADH accumulation. '''Front Physiol''' 14:1164287. - [[Liufu 2023 Front Physiol |»Bioblast link«]]
:::: '''1.32''' Liufu T, Yu H, Yu J, Yu M, Tian Y, Ou Y, Deng J, Xing G, Wang Z (2023) Complex I deficiency in m.3243A>G fibroblasts is alleviated by reducing NADH accumulation. '''Front Physiol''' 14:1164287. - [[Liufu 2023 Front Physiol |»Bioblast link«]]
:S1
 


:::::: [[File:Luo 2015 J Diabetes Res CORRECTION.png|400px|link=Luo 2015 J Diabetes Res]]
:::::: [[File:Luo 2015 J Diabetes Res CORRECTION.png|400px|link=Luo 2015 J Diabetes Res]]
:::: '''1.33''' Luo X, Li R, Yan LJ (2015) Roles of pyruvate, NADH, and mitochondrial Complex I in redox balance and imbalance in β cell function and dysfunction. '''J Diabetes Res''' 2015:512618. - [[Luo 2015 J Diabetes Res |»Bioblast link«]]
:::: '''1.33''' Luo X, Li R, Yan LJ (2015) Roles of pyruvate, NADH, and mitochondrial Complex I in redox balance and imbalance in β cell function and dysfunction. '''J Diabetes Res''' 2015:512618. - [[Luo 2015 J Diabetes Res |»Bioblast link«]]
:S1
 


:::::: [[File:Madamanchi 2007 Circ Res CORRECTION.png|400px|link=Madamanchi 2007 Circ Res]]
:::::: [[File:Madamanchi 2007 Circ Res CORRECTION.png|400px|link=Madamanchi 2007 Circ Res]]
:::: '''1.34''' Madamanchi NR, Runge MS (2007) Mitochondrial dysfunction in atherosclerosis. '''Circ Res''' 100:460-73. - [[Madamanchi 2007 Circ Res |»Bioblast link«]]
:::: '''1.34''' Madamanchi NR, Runge MS (2007) Mitochondrial dysfunction in atherosclerosis. '''Circ Res''' 100:460-73. - [[Madamanchi 2007 Circ Res |»Bioblast link«]]
:S1
 


:::::: [[File:Martinez-Reyes 2020 Nature CORRECTION.png|400px|link=Martinez-Reyes 2020 Nature]]
:::::: [[File:Martinez-Reyes 2020 Nature CORRECTION.png|400px|link=Martinez-Reyes 2020 Nature]]
:::: '''1.35''' Martínez-Reyes I, Cardona LR, Kong H, Vasan K, McElroy GS, Werner M, Kihshen H, Reczek CR, Weinberg SE, Gao P, Steinert EM, Piseaux R, Budinger GRS, Chandel NS (2020) Mitochondrial ubiquinol oxidation is necessary for tumour growth. '''Nature''' 585:288-92. - [[Martinez-Reyes 2020 Nature |»Bioblast link«]]
:::: '''1.35''' Martínez-Reyes I, Cardona LR, Kong H, Vasan K, McElroy GS, Werner M, Kihshen H, Reczek CR, Weinberg SE, Gao P, Steinert EM, Piseaux R, Budinger GRS, Chandel NS (2020) Mitochondrial ubiquinol oxidation is necessary for tumour growth. '''Nature''' 585:288-92. - [[Martinez-Reyes 2020 Nature |»Bioblast link«]]
:S1
 


:::::: [[File:Martinez-Reyes, Chandel 2020 CORRECTION.png|500px|link=Martinez-Reyes 2020 Nat Commun]]
:::::: [[File:Martinez-Reyes, Chandel 2020 CORRECTION.png|500px|link=Martinez-Reyes 2020 Nat Commun]]
:::: '''1.36''' Martínez-Reyes I, Chandel NS (2020) Mitochondrial TCA cycle metabolites control physiology and disease. '''Nat Commun''' 11:102. - [[Martinez-Reyes 2020 Nat Commun |»Bioblast link«]]
:::: '''1.36''' Martínez-Reyes I, Chandel NS (2020) Mitochondrial TCA cycle metabolites control physiology and disease. '''Nat Commun''' 11:102. - [[Martinez-Reyes 2020 Nat Commun |»Bioblast link«]]
:S1
 


:::::: [[File:Massart 2013 Curr Pathobiol Rep CORRECTION.png|400px|link=Massart 2013 Curr Pathobiol Rep]]
:::::: [[File:Massart 2013 Curr Pathobiol Rep CORRECTION.png|400px|link=Massart 2013 Curr Pathobiol Rep]]
:::: '''1.37''' Massart J, Begriche K, Buron N, Porceddu M, Borgne-Sanchez A, Fromenty B (2013) Drug-induced inhibition of mitochondrial fatty acid oxidation and steatosis. '''Curr Pathobiol Rep''' 1:147–57. - [[Massart 2013 Curr Pathobiol Rep |»Bioblast link«]]
:::: '''1.37''' Massart J, Begriche K, Buron N, Porceddu M, Borgne-Sanchez A, Fromenty B (2013) Drug-induced inhibition of mitochondrial fatty acid oxidation and steatosis. '''Curr Pathobiol Rep''' 1:147–57. - [[Massart 2013 Curr Pathobiol Rep |»Bioblast link«]]
:S1
 


:::::: [[File:Massoz 2017 Microbiology Monographs CORRECTION.png|400px|link=Massoz 2017 Microbiology Monographs]]
:::::: [[File:Massoz 2017 Microbiology Monographs CORRECTION.png|400px|link=Massoz 2017 Microbiology Monographs]]
:::: '''1.38''' Massoz S, Cardol P, González-Halphen D, Remacle C (2017) Mitochondrial bioenergetics pathways in Chlamydomonas. In: Hippler M (ed) Chlamydomonas: Molecular genetics and physiology. Microbiology Monographs 30:59-95. '''Springer,''' Cham. - [[Massoz 2017 Microbiology Monographs |»Bioblast link«]]
:::: '''1.38''' Massoz S, Cardol P, González-Halphen D, Remacle C (2017) Mitochondrial bioenergetics pathways in Chlamydomonas. In: Hippler M (ed) Chlamydomonas: Molecular genetics and physiology. Microbiology Monographs 30:59-95. '''Springer,''' Cham. - [[Massoz 2017 Microbiology Monographs |»Bioblast link«]]
:S1
 


:::::: [[File:Missaglia 2021 CORRECTION.png|400px|link=Missaglia 2021 Crit Rev Biochem Mol Biol]]  
:::::: [[File:Missaglia 2021 CORRECTION.png|400px|link=Missaglia 2021 Crit Rev Biochem Mol Biol]]  
:::: '''1.39''' Missaglia S, Tavian D, Angelini C (2021) ETF dehydrogenase advances in molecular genetics and impact on treatment. '''Crit Rev Biochem Mol Biol''' 56:360-72. - [[Missaglia 2021 Crit Rev Biochem Mol Biol |»Bioblast link«]]  
:::: '''1.39''' Missaglia S, Tavian D, Angelini C (2021) ETF dehydrogenase advances in molecular genetics and impact on treatment. '''Crit Rev Biochem Mol Biol''' 56:360-72. - [[Missaglia 2021 Crit Rev Biochem Mol Biol |»Bioblast link«]]  
:S1
 


:::::: [[File:Mosegaard 2020 Int J Mol Sci CORRECTION.png|400px|link=Mosegaard 2020 Int J Mol Sci]]
:::::: [[File:Mosegaard 2020 Int J Mol Sci CORRECTION.png|400px|link=Mosegaard 2020 Int J Mol Sci]]
:::: '''1.40''' Mosegaard S, Dipace G, Bross P, Carlsen J, Gregersen N, Olsen RKJ (2020) Riboflavin deficiency-implications for general human health and inborn errors of metabolism. '''Int J Mol Sci''' 21:3847. - [[Mosegaard 2020 Int J Mol Sci |»Bioblast link«]]
:::: '''1.40''' Mosegaard S, Dipace G, Bross P, Carlsen J, Gregersen N, Olsen RKJ (2020) Riboflavin deficiency-implications for general human health and inborn errors of metabolism. '''Int J Mol Sci''' 21:3847. - [[Mosegaard 2020 Int J Mol Sci |»Bioblast link«]]
:S1
 


:::::: [[File:Nolfi-Donegan 2020 Redox Biol CORRECTION.png|400px|link=Nolfi-Donegan 2020 Redox Biol]]
:::::: [[File:Nolfi-Donegan 2020 Redox Biol CORRECTION.png|400px|link=Nolfi-Donegan 2020 Redox Biol]]
:::: '''1.41''' Nolfi-Donegan D, Braganza A, Shiva S (2020) Mitochondrial electron transport chain: Oxidative phosphorylation, oxidant production, and methods of measurement. '''Redox Biol''' 37:101674. - [[Nolfi-Donegan 2020 Redox Biol |»Bioblast link«]]
:::: '''1.41''' Nolfi-Donegan D, Braganza A, Shiva S (2020) Mitochondrial electron transport chain: Oxidative phosphorylation, oxidant production, and methods of measurement. '''Redox Biol''' 37:101674. - [[Nolfi-Donegan 2020 Redox Biol |»Bioblast link«]]
:S1
 


:::::: [[File:Nsiah-Sefaa 2016 Bioscie Reports CORRECTION.png|500px|link=Nsiah-Sefaa 2016 Biosci Rep]]
:::::: [[File:Nsiah-Sefaa 2016 Bioscie Reports CORRECTION.png|500px|link=Nsiah-Sefaa 2016 Biosci Rep]]
:::: '''1.42''' Nsiah-Sefaa A, McKenzie M (2016) Combined defects in oxidative phosphorylation and fatty acid β-oxidation in mitochondrial disease. '''Biosci Rep''' 36:e00313. - [[Nsiah-Sefaa 2016 Biosci Rep |»Bioblast link«]]
:::: '''1.42''' Nsiah-Sefaa A, McKenzie M (2016) Combined defects in oxidative phosphorylation and fatty acid β-oxidation in mitochondrial disease. '''Biosci Rep''' 36:e00313. - [[Nsiah-Sefaa 2016 Biosci Rep |»Bioblast link«]]
:S1
 


:::::: [[File:Pelletier-Galarneau 2021 Curr Cardiol Rep CORRECTION.png|400px|link=Pelletier-Galarneau 2021 Curr Cardiol Rep]]
:::::: [[File:Pelletier-Galarneau 2021 Curr Cardiol Rep CORRECTION.png|400px|link=Pelletier-Galarneau 2021 Curr Cardiol Rep]]
:::: '''1.43''' Pelletier-Galarneau M, Detmer FJ, Petibon Y, Normandin M, Ma C, Alpert NM, El Fakhri G (2021) Quantification of myocardial mitochondrial membrane potential using PET. '''Curr Cardiol Rep''' 23:70. - [[Pelletier-Galarneau 2021 Curr Cardiol Rep |»Bioblast link«]]
:::: '''1.43''' Pelletier-Galarneau M, Detmer FJ, Petibon Y, Normandin M, Ma C, Alpert NM, El Fakhri G (2021) Quantification of myocardial mitochondrial membrane potential using PET. '''Curr Cardiol Rep''' 23:70. - [[Pelletier-Galarneau 2021 Curr Cardiol Rep |»Bioblast link«]]
:S1
 


:::::: [[File:Peng 2022 Front Oncol CORRECTION.png|400px|link=Peng 2022 Front Oncol]]
:::::: [[File:Peng 2022 Front Oncol CORRECTION.png|400px|link=Peng 2022 Front Oncol]]
:::: '''1.44''' Peng M, Huang Y, Zhang L, Zhao X, Hou Y (2022) Targeting mitochondrial oxidative phosphorylation eradicates acute myeloid leukemic stem cells. '''Front Oncol''' 12:899502. - [[Peng 2022 Front Oncol |»Bioblast link«]]
:::: '''1.44''' Peng M, Huang Y, Zhang L, Zhao X, Hou Y (2022) Targeting mitochondrial oxidative phosphorylation eradicates acute myeloid leukemic stem cells. '''Front Oncol''' 12:899502. - [[Peng 2022 Front Oncol |»Bioblast link«]]
:S1
 


:::::: [[File:Protti 2006 Crit Care CORRECTION.png|400px|link=Protti 2006 Crit Care]]
:::::: [[File:Protti 2006 Crit Care CORRECTION.png|400px|link=Protti 2006 Crit Care]]
:::: '''1.45''' Protti A, Singer M (2006) Bench-to-bedside review: potential strategies to protect or reverse mitochondrial dysfunction in sepsis-induced organ failure. '''Crit Care''' 10:228. - [[Protti 2006 Crit Care |»Bioblast link«]]
:::: '''1.45''' Protti A, Singer M (2006) Bench-to-bedside review: potential strategies to protect or reverse mitochondrial dysfunction in sepsis-induced organ failure. '''Crit Care''' 10:228. - [[Protti 2006 Crit Care |»Bioblast link«]]
:S1
 


:::::: [[File:Rai 2022 G3 (Bethesda) CORRECTION.png|400px|link=Rai 2022 G3 (Bethesda)]]
:::::: [[File:Rai 2022 G3 (Bethesda) CORRECTION.png|400px|link=Rai 2022 G3 (Bethesda)]]
:::: '''1.46''' Rai M, Carter SM, Shefali SA, Mahmoudzadeh NH, Pepin R, Tennessen JM (2022) The Drosophila melanogaster enzyme glycerol-3-phosphate dehydrogenase 1 is required for oogenesis, embryonic development, and amino acid homeostasis. '''G3 (Bethesda)''' 12:jkac115. - [[Rai 2022 G3 (Bethesda) |»Bioblast link«]]
:::: '''1.46''' Rai M, Carter SM, Shefali SA, Mahmoudzadeh NH, Pepin R, Tennessen JM (2022) The Drosophila melanogaster enzyme glycerol-3-phosphate dehydrogenase 1 is required for oogenesis, embryonic development, and amino acid homeostasis. '''G3 (Bethesda)''' 12:jkac115. - [[Rai 2022 G3 (Bethesda) |»Bioblast link«]]
:S1
 


:::::: [[File:Sadri 2023 Arch Biochem Biophys CORRECTION.png|400px|link=Sadri 2023 Arch Biochem Biophys]]
:::::: [[File:Sadri 2023 Arch Biochem Biophys CORRECTION.png|400px|link=Sadri 2023 Arch Biochem Biophys]]
:::: '''1.47''' Sadri S, Tomar N, Yang C, Audi SH, Cowley AW Jr, Dash RK (2023) Effects of ROS pathway inhibitors and NADH and FADH<sub>2</sub> linked substrates on mitochondrial bioenergetics and ROS emission in the heart and kidney cortex and outer medulla. '''Arch Biochem Biophys''' 744:109690. - [[Sadri 2023 Arch Biochem Biophys |»Bioblast link«]]
:::: '''1.47''' Sadri S, Tomar N, Yang C, Audi SH, Cowley AW Jr, Dash RK (2023) Effects of ROS pathway inhibitors and NADH and FADH<sub>2</sub> linked substrates on mitochondrial bioenergetics and ROS emission in the heart and kidney cortex and outer medulla. '''Arch Biochem Biophys''' 744:109690. - [[Sadri 2023 Arch Biochem Biophys |»Bioblast link«]]
:S1
 


:::::: [[File:Sanchez et al 2001 CORRECTION.png|400px|link=Sanchez 2001 Br J Pharmacol]]
:::::: [[File:Sanchez et al 2001 CORRECTION.png|400px|link=Sanchez 2001 Br J Pharmacol]]
:::: '''1.48''' Sanchez H, Zoll J, Bigard X, Veksler V, Mettauer B, Lampert E, Lonsdorfer J, Ventura-Clapier R (2001) Effect of cyclosporin A and its vehicle on cardiac and skeletal muscle mitochondria: relationship to efficacy of the respiratory chain. '''Br J Pharmacol''' 133:781-8. - [[Sanchez 2001 Br J Pharmacol |»Bioblast link«]]
:::: '''1.48''' Sanchez H, Zoll J, Bigard X, Veksler V, Mettauer B, Lampert E, Lonsdorfer J, Ventura-Clapier R (2001) Effect of cyclosporin A and its vehicle on cardiac and skeletal muscle mitochondria: relationship to efficacy of the respiratory chain. '''Br J Pharmacol''' 133:781-8. - [[Sanchez 2001 Br J Pharmacol |»Bioblast link«]]
:S1
 


:::::: [[File:Scandella 2023 Trends Endocrinol Metab CORRECTION.png|400px|link=Scandella 2023 Trends Endocrinol Metab]]
:::::: [[File:Scandella 2023 Trends Endocrinol Metab CORRECTION.png|400px|link=Scandella 2023 Trends Endocrinol Metab]]
:::: '''1.49''' Scandella V, Petrelli F, Moore DL, Braun SMG, Knobloch M (2023) Neural stem cell metabolism revisited: a critical role for mitochondria. '''Trends Endocrinol Metab''' 34:446-61. - [[Scandella 2023 Trends Endocrinol Metab |»Bioblast link«]]
:::: '''1.49''' Scandella V, Petrelli F, Moore DL, Braun SMG, Knobloch M (2023) Neural stem cell metabolism revisited: a critical role for mitochondria. '''Trends Endocrinol Metab''' 34:446-61. - [[Scandella 2023 Trends Endocrinol Metab |»Bioblast link«]]
:S1
 


:::::: [[File:Schwartz 2022 JACC Basic Transl Sci CORRECTION.png|400px|link=Schwartz 2022 JACC Basic Transl Sci]]
:::::: [[File:Schwartz 2022 JACC Basic Transl Sci CORRECTION.png|400px|link=Schwartz 2022 JACC Basic Transl Sci]]
:::: '''1.50''' Schwartz B, Gjini P, Gopal DM, Fetterman JL (2022) Inefficient batteries in heart failure: metabolic bottlenecks disrupting the mitochondrial ecosystem. '''JACC Basic Transl Sci''' 7:1161-79. - [[Schwartz 2022 JACC Basic Transl Sci |»Bioblast link«]]
:::: '''1.50''' Schwartz B, Gjini P, Gopal DM, Fetterman JL (2022) Inefficient batteries in heart failure: metabolic bottlenecks disrupting the mitochondrial ecosystem. '''JACC Basic Transl Sci''' 7:1161-79. - [[Schwartz 2022 JACC Basic Transl Sci |»Bioblast link«]]
:S1
 


:::::: [[File:Shen 2021 Cells CORRECTION.png|400px|link=Shen 2021 Cells]]
:::::: [[File:Shen 2021 Cells CORRECTION.png|400px|link=Shen 2021 Cells]]
:::: '''1.51''' Shen YA, Chen CC, Chen BJ, Wu YT, Juan JR, Chen LY, Teng YC, Wei YH (2021) Potential therapies targeting metabolic pathways in cancer stem cells. '''Cells''' 10:1772. - [[Shen 2021 Cells |»Bioblast link«]]
:::: '''1.51''' Shen YA, Chen CC, Chen BJ, Wu YT, Juan JR, Chen LY, Teng YC, Wei YH (2021) Potential therapies targeting metabolic pathways in cancer stem cells. '''Cells''' 10:1772. - [[Shen 2021 Cells |»Bioblast link«]]
:S1
 


:::::: [[File:Shinmura 2013 Oxid Med Cell Longev CORRECTION.png|400px|link=Shinmura 2013 Oxid Med Cell Longev]]
:::::: [[File:Shinmura 2013 Oxid Med Cell Longev CORRECTION.png|400px|link=Shinmura 2013 Oxid Med Cell Longev]]
:::: '''1.52''' Shinmura K (2013) Effects of caloric restriction on cardiac oxidative stress and mitochondrial bioenergetics: potential role of cardiac sirtuins. '''Oxid Med Cell Longev''' 2013:528935. - [[Shinmura 2013 Oxid Med Cell Longev |»Bioblast link«]]
:::: '''1.52''' Shinmura K (2013) Effects of caloric restriction on cardiac oxidative stress and mitochondrial bioenergetics: potential role of cardiac sirtuins. '''Oxid Med Cell Longev''' 2013:528935. - [[Shinmura 2013 Oxid Med Cell Longev |»Bioblast link«]]
:S1
 


:::::: [[File:Toleikis 2020 Cells CORRECTION.png|400px|link=Toleikis 2020 Cells]]
:::::: [[File:Toleikis 2020 Cells CORRECTION.png|400px|link=Toleikis 2020 Cells]]
:::: '''1.53''' Toleikis A, Trumbeckaite S, Liobikas J, Pauziene N, Kursvietiene L, Kopustinskiene DM (2020) Fatty acid oxidation and mitochondrial morphology changes as key modulators of the affinity for ADP in rat heart mitochondria. '''Cells''' 9:340. - [[Toleikis 2020 Cells |»Bioblast link«]]
:::: '''1.53''' Toleikis A, Trumbeckaite S, Liobikas J, Pauziene N, Kursvietiene L, Kopustinskiene DM (2020) Fatty acid oxidation and mitochondrial morphology changes as key modulators of the affinity for ADP in rat heart mitochondria. '''Cells''' 9:340. - [[Toleikis 2020 Cells |»Bioblast link«]]
:S1
 


:::::: [[File:Wilson 2023 Trends Cell Biol CORRECTION.png|400px|link=Wilson 2023 Trends Cell Biol]]
:::::: [[File:Wilson 2023 Trends Cell Biol CORRECTION.png|400px|link=Wilson 2023 Trends Cell Biol]]
:::: '''1.54''' Wilson N, Kataura T, Korsgen ME, Sun C, Sarkar S, Korolchuk VI (2023) The autophagy-NAD axis in longevity and disease. '''Trends Cell Biol''' 33:788-802. - [[Wilson 2023 Trends Cell Biol |»Bioblast link«]]
:::: '''1.54''' Wilson N, Kataura T, Korsgen ME, Sun C, Sarkar S, Korolchuk VI (2023) The autophagy-NAD axis in longevity and disease. '''Trends Cell Biol''' 33:788-802. - [[Wilson 2023 Trends Cell Biol |»Bioblast link«]]
:S1
 


:::::: [[File:Yusoff 2015 InTech CORRECTION.png|400px|link=Yusoff 2015 InTech]]
:::::: [[File:Yusoff 2015 InTech CORRECTION.png|400px|link=Yusoff 2015 InTech]]
:::: '''1.55''' Yusoff AAM (2015) Role of mitochondrial DNA mutations in brain tumors: A mini-review. '''J Cancer Res Ther''' 11:535-44. - [[Yusoff 2015 J Cancer Res Ther |»Bioblast link«]]
:::: '''1.55''' Yusoff AAM (2015) Role of mitochondrial DNA mutations in brain tumors: A mini-review. '''J Cancer Res Ther''' 11:535-44. - [[Yusoff 2015 J Cancer Res Ther |»Bioblast link«]]
:S1
 
 
:::: '''1.55''' Yusoff AAM, Ahmad F, Idris Z, Jaafar H, Abdullah JM (2015) Understanding mitochondrial DNA in brain tumorigenesis. In: Lichtor T, ed. Molecular considerations and evolving surgical management issues in the treatment of patients with a brain tumor. '''InTech''': http://dx.doi.org/10.5772/58965 - [[Yusoff 2015 InTech |»Bioblast link«]]
:::: '''1.55''' Yusoff AAM, Ahmad F, Idris Z, Jaafar H, Abdullah JM (2015) Understanding mitochondrial DNA in brain tumorigenesis. In: Lichtor T, ed. Molecular considerations and evolving surgical management issues in the treatment of patients with a brain tumor. '''InTech''': http://dx.doi.org/10.5772/58965 - [[Yusoff 2015 InTech |»Bioblast link«]]
:S1
 


=== FADH<sub>2</sub> ⟶ FAD ===
=== FADH<sub>2</sub> ⟶ FAD ===
Line 292: Line 293:
:::::: [[File:Brownlee 2001 Nature CORRECTION.png|400px|link=Brownlee 2001 Nature]]
:::::: [[File:Brownlee 2001 Nature CORRECTION.png|400px|link=Brownlee 2001 Nature]]
:::: '''2.1''' Arden GB, Ramsey DJ (2015) Diabetic retinopathy and a novel treatment based on the biophysics of rod photoreceptors and dark adaptation. In: Kolb H, Fernandez E, Nelson R, eds. '''Webvision''': The organization of the retina and visual system [Internet]. Salt Lake City (UT): University of Utah Health Sciences Center; 1995-. - [[Arden 2015 Webvision |»Bioblast link«]]
:::: '''2.1''' Arden GB, Ramsey DJ (2015) Diabetic retinopathy and a novel treatment based on the biophysics of rod photoreceptors and dark adaptation. In: Kolb H, Fernandez E, Nelson R, eds. '''Webvision''': The organization of the retina and visual system [Internet]. Salt Lake City (UT): University of Utah Health Sciences Center; 1995-. - [[Arden 2015 Webvision |»Bioblast link«]]
:S2
 


:::::: [[File:Bao 2021 Cells CORRECTION.png|400px|link=Bao 2021 Cells]]
:::::: [[File:Bao 2021 Cells CORRECTION.png|400px|link=Bao 2021 Cells]]
:::: '''2.2''' Bao MH, Wong CC (2021) Hypoxia, metabolic reprogramming, and drug resistance in liver cancer. '''Cells''' 10:1715. - [[Bao 2021 Cells |»Bioblast link«]]
:::: '''2.2''' Bao MH, Wong CC (2021) Hypoxia, metabolic reprogramming, and drug resistance in liver cancer. '''Cells''' 10:1715. - [[Bao 2021 Cells |»Bioblast link«]]
:S2
 


:::::: [[File:Bayona-Bafaluy 2021 Redox Biol CORRECTION.png|400px|link=Bayona-Bafaluy 2021 Redox Biol]]
:::::: [[File:Bayona-Bafaluy 2021 Redox Biol CORRECTION.png|400px|link=Bayona-Bafaluy 2021 Redox Biol]]
:::: '''2.3''' Bayona-Bafaluy MP, Garrido-Pérez N, Meade P, Iglesias E, Jiménez-Salvador I, Montoya J, Martínez-Cué C, Ruiz-Pesini E (2021) Down syndrome is an oxidative phosphorylation disorder. Redox Biol 41:101871. - [[Bayona-Bafaluy 2021 Redox Biol |»Bioblast link«]]
:::: '''2.3''' Bayona-Bafaluy MP, Garrido-Pérez N, Meade P, Iglesias E, Jiménez-Salvador I, Montoya J, Martínez-Cué C, Ruiz-Pesini E (2021) Down syndrome is an oxidative phosphorylation disorder. Redox Biol 41:101871. - [[Bayona-Bafaluy 2021 Redox Biol |»Bioblast link«]]
:S2
 


:::::: [[File:Bellance 2009 Front Biosci (Landmark Ed) CORRECTION.png|400px|link=Bellance 2009 Front Biosci (Landmark Ed)]]
:::::: [[File:Bellance 2009 Front Biosci (Landmark Ed) CORRECTION.png|400px|link=Bellance 2009 Front Biosci (Landmark Ed)]]
:::: '''2.4''' Bellance N, Lestienne P, Rossignol R (2009) Mitochondria: from bioenergetics to the metabolic regulation of carcinogenesis. '''Front Biosci (Landmark Ed)''' 14:4015-34. - [[Bellance 2009 Front Biosci (Landmark Ed) |»Bioblast link«]]
:::: '''2.4''' Bellance N, Lestienne P, Rossignol R (2009) Mitochondria: from bioenergetics to the metabolic regulation of carcinogenesis. '''Front Biosci (Landmark Ed)''' 14:4015-34. - [[Bellance 2009 Front Biosci (Landmark Ed) |»Bioblast link«]]
:S2
 


:::::: [[File:Benard 2011 Springer CORRECTION.png|400px|link=Benard 2011 Springer]]
:::::: [[File:Benard 2011 Springer CORRECTION.png|400px|link=Benard 2011 Springer]]
:::: '''2.5''' Benard G, Bellance N, Jose C, Rossignol R (2011) Relationships between mitochondrial dynamics and bioenergetics. In: Lu Bingwei (ed) Mitochondrial dynamics and neurodegeneration. '''Springer''' ISBN 978-94-007-1290-4:47-68. - [[Benard 2011 Springer |»Bioblast link«]]
:::: '''2.5''' Benard G, Bellance N, Jose C, Rossignol R (2011) Relationships between mitochondrial dynamics and bioenergetics. In: Lu Bingwei (ed) Mitochondrial dynamics and neurodegeneration. '''Springer''' ISBN 978-94-007-1290-4:47-68. - [[Benard 2011 Springer |»Bioblast link«]]
:S2
 


:::::: [[File:Bernardo 2013 Biol Chem CORRECTION.png|400px|link=Bernardo 2013 Biol Chem]]
:::::: [[File:Bernardo 2013 Biol Chem CORRECTION.png|400px|link=Bernardo 2013 Biol Chem]]
:::: '''2.6''' Bernardo A, De Simone R, De Nuccio C, Visentin S, Minghetti L (2013) The nuclear receptor peroxisome proliferator-activated receptor-γ promotes oligodendrocyte differentiation through mechanisms involving mitochondria and oscillatory Ca2+ waves. '''Biol Chem''' 394:1607-14. - [[Bernardo 2013 Biol Chem |»Bioblast link«]]
:::: '''2.6''' Bernardo A, De Simone R, De Nuccio C, Visentin S, Minghetti L (2013) The nuclear receptor peroxisome proliferator-activated receptor-γ promotes oligodendrocyte differentiation through mechanisms involving mitochondria and oscillatory Ca2+ waves. '''Biol Chem''' 394:1607-14. - [[Bernardo 2013 Biol Chem |»Bioblast link«]]
:S2
 


:::::: [[File:Betiu 2022 Int J Mol Sci CORRECTION.png|400px|link=Betiu 2022 Int J Mol Sci]]
:::::: [[File:Betiu 2022 Int J Mol Sci CORRECTION.png|400px|link=Betiu 2022 Int J Mol Sci]]
:::: '''2.7''' Bețiu AM, Noveanu L, Hâncu IM, Lascu A, Petrescu L, Maack C, Elmér E, Muntean DM (2022) Mitochondrial effects of common cardiovascular medications: the good, the bad and the mixed. '''Int J Mol Sci''' 23:13653. - [[Betiu 2022 Int J Mol Sci |»Bioblast link«]]
:::: '''2.7''' Bețiu AM, Noveanu L, Hâncu IM, Lascu A, Petrescu L, Maack C, Elmér E, Muntean DM (2022) Mitochondrial effects of common cardiovascular medications: the good, the bad and the mixed. '''Int J Mol Sci''' 23:13653. - [[Betiu 2022 Int J Mol Sci |»Bioblast link«]]
:S2
 


:::::: [[File:Beutner 2014 PLoS One CORRECTION.png|400px|link=Beutner 2014 PLoS One]]
:::::: [[File:Beutner 2014 PLoS One CORRECTION.png|400px|link=Beutner 2014 PLoS One]]
:::: '''2.8''' Beutner G, Eliseev RA, Porter GA Jr (2014) Initiation of electron transport chain activity in the embryonic heart coincides with the activation of mitochondrial complex 1 and the formation of supercomplexes. '''PLoS One''' 9:e113330. - [[Beutner 2014 PLoS One |»Bioblast link«]]
:::: '''2.8''' Beutner G, Eliseev RA, Porter GA Jr (2014) Initiation of electron transport chain activity in the embryonic heart coincides with the activation of mitochondrial complex 1 and the formation of supercomplexes. '''PLoS One''' 9:e113330. - [[Beutner 2014 PLoS One |»Bioblast link«]]
:S2
 


:::::: [[File:Bhalerao 2012 Science CORRECTION.png|400px|link=Bertero 2018 Nat Rev Cardiol]]
:::::: [[File:Bhalerao 2012 Science CORRECTION.png|400px|link=Bertero 2018 Nat Rev Cardiol]]
:::: '''2.9''' Bhalerao S, Clandinin TR (2012) Vitamin K2 takes charge. '''Science''' 336:1241-2. - [[Bertero 2018 Nat Rev Cardiol |»Bioblast link«]]
:::: '''2.9''' Bhalerao S, Clandinin TR (2012) Vitamin K2 takes charge. '''Science''' 336:1241-2. - [[Bertero 2018 Nat Rev Cardiol |»Bioblast link«]]
:S2
 


:::::: [[File:Billingham 2022 Nat Immunol CORRECTION.png|400px|link=Billingham 2022 Nat Immunol]]
:::::: [[File:Billingham 2022 Nat Immunol CORRECTION.png|400px|link=Billingham 2022 Nat Immunol]]
:::: '''2.10''' Billingham LK, Stoolman JS, Vasan K, Rodriguez AE, Poor TA, Szibor M, Jacobs HT, Reczek CR, Rashidi A, Zhang P, Miska J, Chandel NS (2022) Mitochondrial electron transport chain is necessary for NLRP3 inflammasome activation. '''Nat Immunol''' 23:692-704. - [[Billingham 2022 Nat Immunol |»Bioblast link«]]
:::: '''2.10''' Billingham LK, Stoolman JS, Vasan K, Rodriguez AE, Poor TA, Szibor M, Jacobs HT, Reczek CR, Rashidi A, Zhang P, Miska J, Chandel NS (2022) Mitochondrial electron transport chain is necessary for NLRP3 inflammasome activation. '''Nat Immunol''' 23:692-704. - [[Billingham 2022 Nat Immunol |»Bioblast link«]]
:S2
 


:::::: [[File:Brownlee 2001 Nature CORRECTION.png|400px|link=Brownlee 2001 Nature]]
:::::: [[File:Brownlee 2001 Nature CORRECTION.png|400px|link=Brownlee 2001 Nature]]
:::: '''2.11''' Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. '''Nature''' 14:813-20. - [[Brownlee 2001 Nature |»Bioblast link«]]
:::: '''2.11''' Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. '''Nature''' 14:813-20. - [[Brownlee 2001 Nature |»Bioblast link«]]
:::::: Copied by: Arden GB, Ramsey DJ (2015) Diabetic retinopathy and a novel treatment based on the biophysics of rod photoreceptors and dark adaptation. In: Kolb H, Fernandez E, Nelson R, eds. '''Webvision''': The organization of the retina and visual system [Internet]. Salt Lake City (UT): University of Utah Health Sciences Center; 1995-. - [[Arden 2015 Webvision |»Bioblast link«]]
:::::: Copied by: Arden GB, Ramsey DJ (2015) Diabetic retinopathy and a novel treatment based on the biophysics of rod photoreceptors and dark adaptation. In: Kolb H, Fernandez E, Nelson R, eds. '''Webvision''': The organization of the retina and visual system [Internet]. Salt Lake City (UT): University of Utah Health Sciences Center; 1995-. - [[Arden 2015 Webvision |»Bioblast link«]]
:S2
 


:::::: [[File:Brownlee 2003 J Clin Invest CORRECTION.png|400px|link=Brownlee 2003 J Clin Invest]]
:::::: [[File:Brownlee 2003 J Clin Invest CORRECTION.png|400px|link=Brownlee 2003 J Clin Invest]]
:::: '''2.12''' Brownlee M (2003) A radical explanation for glucose-induced beta cell dysfunction. '''J Clin Invest''' 112:1788-90. - [[Brownlee 2003 J Clin Invest |»Bioblast link«]]
:::: '''2.12''' Brownlee M (2003) A radical explanation for glucose-induced beta cell dysfunction. '''J Clin Invest''' 112:1788-90. - [[Brownlee 2003 J Clin Invest |»Bioblast link«]]
:S2
 


:::::: [[File:Chakrabarty 2021 Cell Stem Cell 3 CORRECTION.png|400px|link=Chakrabarty 2021 Cell Stem Cell]]
:::::: [[File:Chakrabarty 2021 Cell Stem Cell 3 CORRECTION.png|400px|link=Chakrabarty 2021 Cell Stem Cell]]
:::: '''2.13''' Chakrabarty RP, Chandel NS (2021) Mitochondria as signaling organelles control mammalian stem cell fate. '''Cell Stem Cell''' 28:394-408. - [[Chakrabarty 2021 Cell Stem Cell |»Bioblast link«]]
:::: '''2.13''' Chakrabarty RP, Chandel NS (2021) Mitochondria as signaling organelles control mammalian stem cell fate. '''Cell Stem Cell''' 28:394-408. - [[Chakrabarty 2021 Cell Stem Cell |»Bioblast link«]]
:S2
 


:::::: [[File:Choudhury 2021 Antioxidants (Basel) CORRECTION.png|400px|link=Choudhury 2021 Antioxidants (Basel)]]
:::::: [[File:Choudhury 2021 Antioxidants (Basel) CORRECTION.png|400px|link=Choudhury 2021 Antioxidants (Basel)]]
:::: '''2.14''' Choudhury FK (2021) Mitochondrial redox metabolism: the epicenter of metabolism during cancer progression. '''Antioxidants (Basel)''' 10:1838. - [[Choudhury 2021 Antioxidants (Basel) |»Bioblast link«]]
:::: '''2.14''' Choudhury FK (2021) Mitochondrial redox metabolism: the epicenter of metabolism during cancer progression. '''Antioxidants (Basel)''' 10:1838. - [[Choudhury 2021 Antioxidants (Basel) |»Bioblast link«]]
:S2
 


:::::: [[File:De Villiers 2018 Adv Exp Med Biol CORRECTION.png|400px|link=De Villiers 2018 Adv Exp Med Biol]]
:::::: [[File:De Villiers 2018 Adv Exp Med Biol CORRECTION.png|400px|link=De Villiers 2018 Adv Exp Med Biol]]
:::: '''2.15''' de Villiers D, Potgieter M, Ambele MA, Adam L, Durandt C, Pepper MS (2018) The role of reactive oxygen species in adipogenic differentiation. '''Adv Exp Med Biol''' 1083:125-144. - [[De Villiers 2018 Adv Exp Med Biol |»Bioblast link«]]
:::: '''2.15''' de Villiers D, Potgieter M, Ambele MA, Adam L, Durandt C, Pepper MS (2018) The role of reactive oxygen species in adipogenic differentiation. '''Adv Exp Med Biol''' 1083:125-144. - [[De Villiers 2018 Adv Exp Med Biol |»Bioblast link«]]
:S2
 


:::::: [[File:Delport 2017 Metab Brain Dis CORRECTION.png|400px|link=Delport 2017 Metab Brain Dis]]
:::::: [[File:Delport 2017 Metab Brain Dis CORRECTION.png|400px|link=Delport 2017 Metab Brain Dis]]
:::: '''2.16''' Delport A, Harvey BH, Petzer A, Petzer JP (2017) Methylene blue and its analogues as antidepressant compounds. '''Metab Brain Dis''' 32:1357-82. - [[Delport 2017 Metab Brain Dis |»Bioblast link«]]
:::: '''2.16''' Delport A, Harvey BH, Petzer A, Petzer JP (2017) Methylene blue and its analogues as antidepressant compounds. '''Metab Brain Dis''' 32:1357-82. - [[Delport 2017 Metab Brain Dis |»Bioblast link«]]
:S2
 


:::::: [[File:Ekbal 2013 Chest CORRECTION.png|400px|link=Ekbal 2013 Chest]]
:::::: [[File:Ekbal 2013 Chest CORRECTION.png|400px|link=Ekbal 2013 Chest]]
:::: '''2.17''' Ekbal NJ, Dyson A, Black C, Singer M (2013) Monitoring tissue perfusion, oxygenation, and metabolism in critically ill patients. '''Chest''' 143:1799-1808. - [[Ekbal 2013 Chest |»Bioblast link«]]
:::: '''2.17''' Ekbal NJ, Dyson A, Black C, Singer M (2013) Monitoring tissue perfusion, oxygenation, and metabolism in critically ill patients. '''Chest''' 143:1799-1808. - [[Ekbal 2013 Chest |»Bioblast link«]]
:S2
 


:::::: [[File:Escoll 2019 Immunometabolism CORRECTION.png|400px|link=Escoll 2019 Immunometabolism]]
:::::: [[File:Escoll 2019 Immunometabolism CORRECTION.png|400px|link=Escoll 2019 Immunometabolism]]
:::: '''2.18''' Escoll P, Platon L, Buchrieser C (2019) Roles of mitochondrial respiratory Complexes during infection. '''Immunometabolism''' 1:e190011. - [[Escoll 2019 Immunometabolism |»Bioblast link«]]
:::: '''2.18''' Escoll P, Platon L, Buchrieser C (2019) Roles of mitochondrial respiratory Complexes during infection. '''Immunometabolism''' 1:e190011. - [[Escoll 2019 Immunometabolism |»Bioblast link«]]
:S2
 


:::::: [[File:Eyenga 2022 Cells CORRECTION.png|400px|link=Eyenga 2022 Cells]]
:::::: [[File:Eyenga 2022 Cells CORRECTION.png|400px|link=Eyenga 2022 Cells]]
:::: '''2.19''' Eyenga P, Rey B, Eyenga L, Sheu SS (2022) Regulation of oxidative phosphorylation of liver mitochondria in sepsis. '''Cells''' 11:1598. - [[Eyenga 2022 Cells |»Bioblast link«]]
:::: '''2.19''' Eyenga P, Rey B, Eyenga L, Sheu SS (2022) Regulation of oxidative phosphorylation of liver mitochondria in sepsis. '''Cells''' 11:1598. - [[Eyenga 2022 Cells |»Bioblast link«]]
:S2
 


:::::: [[File:Favia 2019 J Clin Med CORRECTION.png|400px|link=Favia 2019 J Clin Med]]
:::::: [[File:Favia 2019 J Clin Med CORRECTION.png|400px|link=Favia 2019 J Clin Med]]
:::: '''2.20''' Favia M, de Bari L, Bobba A, Atlante A (2019) An intriguing involvement of mitochondria in cystic fibrosis. '''J Clin Med''' 8:1890. - [[Favia 2019 J Clin Med |»Bioblast link«]]
:::: '''2.20''' Favia M, de Bari L, Bobba A, Atlante A (2019) An intriguing involvement of mitochondria in cystic fibrosis. '''J Clin Med''' 8:1890. - [[Favia 2019 J Clin Med |»Bioblast link«]]
:S2
 


:::::: [[File:Feher 2017 Academic Press CORRECTION.png|400px|link=Feher 2017 Academic Press]]
:::::: [[File:Feher 2017 Academic Press CORRECTION.png|400px|link=Feher 2017 Academic Press]]
:::: '''2.21''' Feher J (2017) 2.10 - ATP production II: The TCA cycle and oxidative phosphorylation. Quantitative human physiology (2nd ed) '''Academic Press''', Boston:277-40. - [[Feher 2017 Academic Press |»Bioblast link«]]
:::: '''2.21''' Feher J (2017) 2.10 - ATP production II: The TCA cycle and oxidative phosphorylation. Quantitative human physiology (2nd ed) '''Academic Press''', Boston:277-40. - [[Feher 2017 Academic Press |»Bioblast link«]]
:S2
 


:::::: [[File:Garcia-Neto 2017 PLOS ONE CORRECTION.png|400px|link=Garcia-Neto 2017 PLOS ONE]]
:::::: [[File:Garcia-Neto 2017 PLOS ONE CORRECTION.png|400px|link=Garcia-Neto 2017 PLOS ONE]]
:::: '''2.22''' Garcia-Neto W, Cabrera-Orefice A, Uribe-Carvajal S, Kowaltowski AJ, Alberto Luévano-Martínez L (2017) High osmolarity environments activate the mitochondrial alternative oxidase in ''Debaryomyces Hansenii''. '''PLOS ONE''' 12:e0169621.  - [[Garcia-Neto 2017 PLOS ONE |»Bioblast link«]]
:::: '''2.22''' Garcia-Neto W, Cabrera-Orefice A, Uribe-Carvajal S, Kowaltowski AJ, Alberto Luévano-Martínez L (2017) High osmolarity environments activate the mitochondrial alternative oxidase in ''Debaryomyces Hansenii''. '''PLOS ONE''' 12:e0169621.  - [[Garcia-Neto 2017 PLOS ONE |»Bioblast link«]]
:S2
 


:::::: [[File:Garrido-Perez 2020 Int J Mol Sci CORRECTION.png|400px|link=Garrido-Perez 2020 Int J Mol Sci]]
:::::: [[File:Garrido-Perez 2020 Int J Mol Sci CORRECTION.png|400px|link=Garrido-Perez 2020 Int J Mol Sci]]
:::: '''2.23''' Garrido-Pérez N, Vela-Sebastián A, López-Gallardo E, Emperador S, Iglesias E, Meade P, Jiménez-Mallebrera C, Montoya J, Bayona-Bafaluy MP, Ruiz-Pesini E (2020) Oxidative phosphorylation dysfunction modifies the cell secretome. '''Int J Mol Sci''' 21:3374. - [[Garrido-Perez 2020 Int J Mol Sci |»Bioblast link«]]
:::: '''2.23''' Garrido-Pérez N, Vela-Sebastián A, López-Gallardo E, Emperador S, Iglesias E, Meade P, Jiménez-Mallebrera C, Montoya J, Bayona-Bafaluy MP, Ruiz-Pesini E (2020) Oxidative phosphorylation dysfunction modifies the cell secretome. '''Int J Mol Sci''' 21:3374. - [[Garrido-Perez 2020 Int J Mol Sci |»Bioblast link«]]
:S2
 


:::::: [[File:Gasmi 2021 Arch Toxicol CORRECTION.png|400px|link=Gasmi 2021 Arch Toxicol]]
:::::: [[File:Gasmi 2021 Arch Toxicol CORRECTION.png|400px|link=Gasmi 2021 Arch Toxicol]]
:::: '''2.24''' Gasmi A, Peana M, Arshad M, Butnariu M, Menzel A, Bjørklund G (2021) Krebs cycle: activators, inhibitors and their roles in the modulation of carcinogenesis. '''Arch Toxicol''' 95:1161-78. - [[Gasmi 2021 Arch Toxicol |»Bioblast link«]]
:::: '''2.24''' Gasmi A, Peana M, Arshad M, Butnariu M, Menzel A, Bjørklund G (2021) Krebs cycle: activators, inhibitors and their roles in the modulation of carcinogenesis. '''Arch Toxicol''' 95:1161-78. - [[Gasmi 2021 Arch Toxicol |»Bioblast link«]]
:S2
 


:::::: [[File:Geng 2023 Front Physiol CORRECTION.png|400px|link=Geng 2023 Front Physiol]]
:::::: [[File:Geng 2023 Front Physiol CORRECTION.png|400px|link=Geng 2023 Front Physiol]]
:::: '''2.25''' Geng Y, Hu Y, Zhang F, Tuo Y, Ge R, Bai Z (2023) Mitochondria in hypoxic pulmonary hypertension, roles and the potential targets. '''Front Physiol''' 14:1239643. - [[Geng 2023 Front Physiol |»Bioblast link«]]
:::: '''2.25''' Geng Y, Hu Y, Zhang F, Tuo Y, Ge R, Bai Z (2023) Mitochondria in hypoxic pulmonary hypertension, roles and the potential targets. '''Front Physiol''' 14:1239643. - [[Geng 2023 Front Physiol |»Bioblast link«]]
:S2
 


:::::: [[File:Giachin 2021 Angew Chem Int Ed Engl CORRECTION.png|400px|link=Giachin 2021 Angew Chem Int Ed Engl]]
:::::: [[File:Giachin 2021 Angew Chem Int Ed Engl CORRECTION.png|400px|link=Giachin 2021 Angew Chem Int Ed Engl]]
:::: '''2.26''' Giachin G, Jessop M, Bouverot R, Acajjaoui S, Saïdi M, Chretien A, Bacia-Verloop M, Signor L, Mas PJ, Favier A, Borel Meneroud E, Hons M, Hart DJ, Kandiah E, Boeri Erba E, Buisson A, Leonard G, Gutsche I, Soler-Lopez M (2021) Assembly of the mitochondrial Complex I assembly complex suggests a regulatory role for deflavination. '''Angew Chem Int Ed Engl''' 60:4689-97. - [[Giachin 2021 Angew Chem Int Ed Engl |»Bioblast link«]]
:::: '''2.26''' Giachin G, Jessop M, Bouverot R, Acajjaoui S, Saïdi M, Chretien A, Bacia-Verloop M, Signor L, Mas PJ, Favier A, Borel Meneroud E, Hons M, Hart DJ, Kandiah E, Boeri Erba E, Buisson A, Leonard G, Gutsche I, Soler-Lopez M (2021) Assembly of the mitochondrial Complex I assembly complex suggests a regulatory role for deflavination. '''Angew Chem Int Ed Engl''' 60:4689-97. - [[Giachin 2021 Angew Chem Int Ed Engl |»Bioblast link«]]
:S2
 


:::::: [[File:Gopan 2021 World J Hepatol CORRECTION.png|400px|link=Gopan 2021 World J Hepatol]]
:::::: [[File:Gopan 2021 World J Hepatol CORRECTION.png|400px|link=Gopan 2021 World J Hepatol]]
:::: '''2.27''' Gopan A, Sarma MS (2021) Mitochondrial hepatopathy: Respiratory chain disorders- 'breathing in and out of the liver'. '''World J Hepatol''' 13:1707-26. - [[Gopan 2021 World J Hepatol |»Bioblast link«]]
:::: '''2.27''' Gopan A, Sarma MS (2021) Mitochondrial hepatopathy: Respiratory chain disorders- 'breathing in and out of the liver'. '''World J Hepatol''' 13:1707-26. - [[Gopan 2021 World J Hepatol |»Bioblast link«]]
:S2
 


:::::: [[File:Gujarati 2020 Am J Physiol Renal Physiol CORRECTION.png|400px|link=Gujarati 2020 Am J Physiol Renal Physiol]]
:::::: [[File:Gujarati 2020 Am J Physiol Renal Physiol CORRECTION.png|400px|link=Gujarati 2020 Am J Physiol Renal Physiol]]
:::: '''2.28''' Gujarati NA, Vasquez JM, Bogenhagen DF, Mallipattu SK (2020) The complicated role of mitochondria in the podocyte. '''Am J Physiol Renal Physiol''' 319:F955-65. - [[Gujarati 2020 Am J Physiol Renal Physiol |»Bioblast link«]]
:::: '''2.28''' Gujarati NA, Vasquez JM, Bogenhagen DF, Mallipattu SK (2020) The complicated role of mitochondria in the podocyte. '''Am J Physiol Renal Physiol''' 319:F955-65. - [[Gujarati 2020 Am J Physiol Renal Physiol |»Bioblast link«]]
:S2
 


:::::: [[File:Han 2019 Am J Respir Cell Mol Biol CORRECTION.png|400px|link=Han 2019 Am J Respir Cell Mol Biol]]
:::::: [[File:Han 2019 Am J Respir Cell Mol Biol CORRECTION.png|400px|link=Han 2019 Am J Respir Cell Mol Biol]]
:::: '''2.29''' Han S, Chandel NS (2019) There is no smoke without mitochondria. '''Am J Respir Cell Mol Biol''' 60:489-91. - [[Han 2019 Am J Respir Cell Mol Biol |»Bioblast link«]]
:::: '''2.29''' Han S, Chandel NS (2019) There is no smoke without mitochondria. '''Am J Respir Cell Mol Biol''' 60:489-91. - [[Han 2019 Am J Respir Cell Mol Biol |»Bioblast link«]]
:S2
 


:::::: [[File:Hanna 2023 Antioxid Redox Signal CORRECTION.png|400px|link=Hanna 2023 Antioxid Redox Signal]]
:::::: [[File:Hanna 2023 Antioxid Redox Signal CORRECTION.png|400px|link=Hanna 2023 Antioxid Redox Signal]]
:::: '''2.30''' Hanna D, Kumar R, Banerjee R (2023) A metabolic paradigm for hydrogen sulfide signaling via electron transport chain plasticity. '''Antioxid Redox Signal''' 38:57-67. - [[Hanna 2023 Antioxid Redox Signal |»Bioblast link«]]
:::: '''2.30''' Hanna D, Kumar R, Banerjee R (2023) A metabolic paradigm for hydrogen sulfide signaling via electron transport chain plasticity. '''Antioxid Redox Signal''' 38:57-67. - [[Hanna 2023 Antioxid Redox Signal |»Bioblast link«]]
:S2
 


:::::: [[File:Hanna 2022 Front Cell Dev Biol CORRECTION.png|400px|link=Hanna 2022 Front Cell Dev Biol]]
:::::: [[File:Hanna 2022 Front Cell Dev Biol CORRECTION.png|400px|link=Hanna 2022 Front Cell Dev Biol]]
:::: '''2.31''' Hanna J, David LA, Touahri Y, Fleming T, Screaton RA, Schuurmans C (2022) Beyond genetics: the role of metabolism in photoreceptor survival, development and repair. '''Front Cell Dev''' Biol 10:887764. - [[Hanna 2022 Front Cell Dev Biol |»Bioblast link«]]
:::: '''2.31''' Hanna J, David LA, Touahri Y, Fleming T, Screaton RA, Schuurmans C (2022) Beyond genetics: the role of metabolism in photoreceptor survival, development and repair. '''Front Cell Dev''' Biol 10:887764. - [[Hanna 2022 Front Cell Dev Biol |»Bioblast link«]]
:S2
 


:::::: [[File:Howie 2014 Front Immunol CORRECTION.png|400px|link=Howie 2014 Front Immunol]]
:::::: [[File:Howie 2014 Front Immunol CORRECTION.png|400px|link=Howie 2014 Front Immunol]]
:::: '''2.32''' Howie D, Waldmann H, Cobbold S (2014) Nutrient sensing via mTOR in T cells maintains a tolerogenic microenvironment. '''Front Immunol''' 5:409. - [[Howie 2014 Front Immunol |»Bioblast link«]]
:::: '''2.32''' Howie D, Waldmann H, Cobbold S (2014) Nutrient sensing via mTOR in T cells maintains a tolerogenic microenvironment. '''Front Immunol''' 5:409. - [[Howie 2014 Front Immunol |»Bioblast link«]]
:S2
 


:::::: [[File:Jarmuszkiewicz 2023 Front Biosci CORRECTION.png|500px|link=Jarmuszkiewicz 2023 Front Biosci (Landmark Ed)]]
:::::: [[File:Jarmuszkiewicz 2023 Front Biosci CORRECTION.png|500px|link=Jarmuszkiewicz 2023 Front Biosci (Landmark Ed)]]
:::: '''2.33''' Jarmuszkiewicz W, Dominiak K, Budzinska A, Wojcicki K, Galganski L (2023) Mitochondrial coenzyme Q redox homeostasis and reactive oxygen species production. '''Front Biosci (Landmark Ed)''' 28:61. - [[Jarmuszkiewicz 2023 Front Biosci (Landmark Ed) |»Bioblast link«]]
:::: '''2.33''' Jarmuszkiewicz W, Dominiak K, Budzinska A, Wojcicki K, Galganski L (2023) Mitochondrial coenzyme Q redox homeostasis and reactive oxygen species production. '''Front Biosci (Landmark Ed)''' 28:61. - [[Jarmuszkiewicz 2023 Front Biosci (Landmark Ed) |»Bioblast link«]]
:S2
 


:::::: [[File:Javali 2023 Biogerontology CORRECTION.png|200px|link=Javali 2023 Biogerontology]]
:::::: [[File:Javali 2023 Biogerontology CORRECTION.png|200px|link=Javali 2023 Biogerontology]]
:::: '''2.34''' Javali PS, Sekar M, Kumar A, Thirumurugan K (2023) Dynamics of redox signaling in aging via autophagy, inflammation, and senescence. '''Biogerontology''' 24:663-78. - [[Javali 2023 Biogerontology |»Bioblast link«]]
:::: '''2.34''' Javali PS, Sekar M, Kumar A, Thirumurugan K (2023) Dynamics of redox signaling in aging via autophagy, inflammation, and senescence. '''Biogerontology''' 24:663-78. - [[Javali 2023 Biogerontology |»Bioblast link«]]
:S2
 


:::::: [[File:Jayasankar 2022 ACS Omega CORRECTION.png|400px|link=Jayasankar 2022 ACS Omega]]
:::::: [[File:Jayasankar 2022 ACS Omega CORRECTION.png|400px|link=Jayasankar 2022 ACS Omega]]
:::: '''2.35''' Jayasankar V, Vrdoljak N, Roma A, Ahmed N, Tcheng M, Minden MD, Spagnuolo PA (2022) Novel mango ginger bioactive (2,4,6-trihydroxy-3,5-diprenyldihydrochalcone) inhibits mitochondrial metabolism in combination with Avocatin B. '''ACS Omega''' 7:1682-93. - [[Jayasankar 2022 ACS Omega |»Bioblast link«]]
:::: '''2.35''' Jayasankar V, Vrdoljak N, Roma A, Ahmed N, Tcheng M, Minden MD, Spagnuolo PA (2022) Novel mango ginger bioactive (2,4,6-trihydroxy-3,5-diprenyldihydrochalcone) inhibits mitochondrial metabolism in combination with Avocatin B. '''ACS Omega''' 7:1682-93. - [[Jayasankar 2022 ACS Omega |»Bioblast link«]]
:S2
 


:::::: [[File:Keane 2011 Parkinsons Dis CORRECTION.png|400px|link=Keane 2011 Parkinsons Dis]]
:::::: [[File:Keane 2011 Parkinsons Dis CORRECTION.png|400px|link=Keane 2011 Parkinsons Dis]]
:::: '''2.36''' Keane PC, Kurzawa M, Blain PG, Morris CM (2011) Mitochondrial dysfunction in Parkinson's disease. '''Parkinsons Dis''' 2011:716871. - [[Keane 2011 Parkinsons Dis |»Bioblast link«]]
:::: '''2.36''' Keane PC, Kurzawa M, Blain PG, Morris CM (2011) Mitochondrial dysfunction in Parkinson's disease. '''Parkinsons Dis''' 2011:716871. - [[Keane 2011 Parkinsons Dis |»Bioblast link«]]
:S2
 


:::::: [[File:Kim 2010 Korean Diabetes J CORRECTION.png|400px|link=Kim 2010 Korean Diabetes J]]
:::::: [[File:Kim 2010 Korean Diabetes J CORRECTION.png|400px|link=Kim 2010 Korean Diabetes J]]
:::: '''2.37''' Kim EH, Koh EH, Park JY, Lee KU (2010) Adenine nucleotide translocator as a regulator of mitochondrial function: implication in the pathogenesis of metabolic syndrome. '''Korean Diabetes J''' 34:146-53. - [[Kim 2010 Korean Diabetes J |»Bioblast link«]]
:::: '''2.37''' Kim EH, Koh EH, Park JY, Lee KU (2010) Adenine nucleotide translocator as a regulator of mitochondrial function: implication in the pathogenesis of metabolic syndrome. '''Korean Diabetes J''' 34:146-53. - [[Kim 2010 Korean Diabetes J |»Bioblast link«]]
:S2
 


:::::: [[File:Knottnerus 2018 Rev Endocr Metab Disord CORRECTION.png|400px|link=Knottnerus 2018 Rev Endocr Metab Disord]]
:::::: [[File:Knottnerus 2018 Rev Endocr Metab Disord CORRECTION.png|400px|link=Knottnerus 2018 Rev Endocr Metab Disord]]
:::: '''2.38''' Knottnerus SJG, Bleeker JC, Wüst RCI, Ferdinandusse S, IJlst L, Wijburg FA, Wanders RJA, Visser G, Houtkooper RH (2018) Disorders of mitochondrial long-chain fatty acid oxidation and the carnitine shuttle. '''Rev Endocr Metab Disord''' 19:93-106. - [[Knottnerus 2018 Rev Endocr Metab Disord |»Bioblast link«]]
:::: '''2.38''' Knottnerus SJG, Bleeker JC, Wüst RCI, Ferdinandusse S, IJlst L, Wijburg FA, Wanders RJA, Visser G, Houtkooper RH (2018) Disorders of mitochondrial long-chain fatty acid oxidation and the carnitine shuttle. '''Rev Endocr Metab Disord''' 19:93-106. - [[Knottnerus 2018 Rev Endocr Metab Disord |»Bioblast link«]]
:S2
 


:::::: [[File:Kumar 2021 J Biol Chem CORRECTION.png|400px|link=Kumar 2021 J Biol Chem]]
:::::: [[File:Kumar 2021 J Biol Chem CORRECTION.png|400px|link=Kumar 2021 J Biol Chem]]
:::: '''2.39''' Kumar R, Landry AP, Guha A, Vitvitsky V, Lee HJ, Seike K, Reddy P, Lyssiotis CA, Banerjee R (2021) A redox cycle with complex II prioritizes sulfide quinone oxidoreductase dependent H<sub>2</sub>S oxidation. '''J Biol Chem''' 298:101435. - [[Kumar 2021 J Biol Chem |»Bioblast link«]]
:::: '''2.39''' Kumar R, Landry AP, Guha A, Vitvitsky V, Lee HJ, Seike K, Reddy P, Lyssiotis CA, Banerjee R (2021) A redox cycle with complex II prioritizes sulfide quinone oxidoreductase dependent H<sub>2</sub>S oxidation. '''J Biol Chem''' 298:101435. - [[Kumar 2021 J Biol Chem |»Bioblast link«]]
:S2
 


:::::: [[File:Ley-Ngardigal 2022 FEBS J CORRECTION.png|400px|link=Ley-Ngardigal 2022 FEBS J]]
:::::: [[File:Ley-Ngardigal 2022 FEBS J CORRECTION.png|400px|link=Ley-Ngardigal 2022 FEBS J]]
:::: '''2.40''' Ley-Ngardigal S, Bertolin G (2022) Approaches to monitor ATP levels in living cells: where do we stand?. '''FEBS J''' 289:7940-69. - [[Ley-Ngardigal 2022 FEBS J |»Bioblast link«]]
:::: '''2.40''' Ley-Ngardigal S, Bertolin G (2022) Approaches to monitor ATP levels in living cells: where do we stand?. '''FEBS J''' 289:7940-69. - [[Ley-Ngardigal 2022 FEBS J |»Bioblast link«]]
:S2
 


:::::: [[File:Litwack 2018 Academic Press CORRECTION.png|400px|link=Litwack 2018 Academic Press]]
:::::: [[File:Litwack 2018 Academic Press CORRECTION.png|400px|link=Litwack 2018 Academic Press]]
:::: '''2.41''' Litwack G (2018) Metabolism of fat, carbohydrate, and nucleic acids. In: Litwack G (ed) Human biochemistry, '''Academic Press''', Chapter 14:395-426. - [[Litwack 2018 Academic Press |»Bioblast link«]]
:::: '''2.41''' Litwack G (2018) Metabolism of fat, carbohydrate, and nucleic acids. In: Litwack G (ed) Human biochemistry, '''Academic Press''', Chapter 14:395-426. - [[Litwack 2018 Academic Press |»Bioblast link«]]
:S2
 


:::::: [[File:Litwiniuk 2021 Pharmaceuticals (Basel) CORRECTION.png|400px|link=Litwiniuk 2021 Pharmaceuticals (Basel)]]
:::::: [[File:Litwiniuk 2021 Pharmaceuticals (Basel) CORRECTION.png|400px|link=Litwiniuk 2021 Pharmaceuticals (Basel)]]
:::: '''2.42''' Litwiniuk A, Baranowska-Bik A, Domańska A, Kalisz M, Bik W (2021) Contribution of mitochondrial dysfunction combined with NLRP3 inflammasome activation in selected neurodegenerative diseases. '''Pharmaceuticals (Basel)''' 14:1221. - [[Litwiniuk 2021 Pharmaceuticals (Basel) |»Bioblast link«]]
:::: '''2.42''' Litwiniuk A, Baranowska-Bik A, Domańska A, Kalisz M, Bik W (2021) Contribution of mitochondrial dysfunction combined with NLRP3 inflammasome activation in selected neurodegenerative diseases. '''Pharmaceuticals (Basel)''' 14:1221. - [[Litwiniuk 2021 Pharmaceuticals (Basel) |»Bioblast link«]]
:S2
 


:::::: [[File:Liu 2023 Int J Biol Sci CORRECTION.png|400px|link=Liu 2023 Int J Biol Sci]]
:::::: [[File:Liu 2023 Int J Biol Sci CORRECTION.png|400px|link=Liu 2023 Int J Biol Sci]]
:::: '''2.43''' Liu Y, Sun Y, Guo Y, Shi X, Chen X, Feng W, Wu LL, Zhang J, Yu S, Wang Y, Shi Y (2023) An overview: the diversified role of mitochondria in cancer metabolism. '''Int J Biol Sci''' 19:897-915. - [[Liu 2023 Int J Biol Sci |»Bioblast link«]]
:::: '''2.43''' Liu Y, Sun Y, Guo Y, Shi X, Chen X, Feng W, Wu LL, Zhang J, Yu S, Wang Y, Shi Y (2023) An overview: the diversified role of mitochondria in cancer metabolism. '''Int J Biol Sci''' 19:897-915. - [[Liu 2023 Int J Biol Sci |»Bioblast link«]]
:S2
 


:::::: [[File:Lozano 2019 Oxid Med Cell Longev CORRECTION.png|400px|link=Lozano 2019 Oxid Med Cell Longev]]
:::::: [[File:Lozano 2019 Oxid Med Cell Longev CORRECTION.png|400px|link=Lozano 2019 Oxid Med Cell Longev]]
:::: '''2.44''' Lozano O, Lázaro-Alfaro A, Silva-Platas C, Oropeza-Almazán Y, Torres-Quintanilla A, Bernal-Ramírez J, Alves-Figueiredo H, García-Rivas G (2019) Nanoencapsulated quercetin improves cardioprotection during hypoxia-reoxygenation injury through preservation of mitochondrial function. '''Oxid Med Cell Longev''' 2019:7683051. - [[Lozano 2019 Oxid Med Cell Longev |»Bioblast link«]]
:::: '''2.44''' Lozano O, Lázaro-Alfaro A, Silva-Platas C, Oropeza-Almazán Y, Torres-Quintanilla A, Bernal-Ramírez J, Alves-Figueiredo H, García-Rivas G (2019) Nanoencapsulated quercetin improves cardioprotection during hypoxia-reoxygenation injury through preservation of mitochondrial function. '''Oxid Med Cell Longev''' 2019:7683051. - [[Lozano 2019 Oxid Med Cell Longev |»Bioblast link«]]
:S2
 


:::::: [[File:Luo 2020 Int J Mol Sci CORRECTION.png|400px|link=Luo 2020 Int J Mol Sci]]
:::::: [[File:Luo 2020 Int J Mol Sci CORRECTION.png|400px|link=Luo 2020 Int J Mol Sci]]
:::: '''2.45''' Luo Y, Ma J, Lu W (2020) The significance of mitochondrial dysfunction in cancer. '''Int J Mol Sci''' 21:5598. - [[Luo 2020 Int J Mol Sci |»Bioblast link«]]
:::: '''2.45''' Luo Y, Ma J, Lu W (2020) The significance of mitochondrial dysfunction in cancer. '''Int J Mol Sci''' 21:5598. - [[Luo 2020 Int J Mol Sci |»Bioblast link«]]
:S2
 


:::::: [[File:Ma 2012 Exp Diabetes Res CORRECTION.png|400px|link=Ma 2012 Exp Diabetes Res]]
:::::: [[File:Ma 2012 Exp Diabetes Res CORRECTION.png|400px|link=Ma 2012 Exp Diabetes Res]]
:::: '''2.46''' Ma ZA, Zhao Z, Turk J (2012) Mitochondrial dysfunction and β-cell failure in type 2 diabetes mellitus. '''Exp Diabetes Res''' 2012:703538. - [[Ma 2012 Exp Diabetes Res |»Bioblast link«]]
:::: '''2.46''' Ma ZA, Zhao Z, Turk J (2012) Mitochondrial dysfunction and β-cell failure in type 2 diabetes mellitus. '''Exp Diabetes Res''' 2012:703538. - [[Ma 2012 Exp Diabetes Res |»Bioblast link«]]
:S2
 


:::::: [[File:Maffezzini 2020 Cell Mol Life Sci CORRECTION.jpg.png|400px|link=Maffezzini 2020 Cell Mol Life Sci]]
:::::: [[File:Maffezzini 2020 Cell Mol Life Sci CORRECTION.jpg.png|400px|link=Maffezzini 2020 Cell Mol Life Sci]]
:::: '''2.47''' Maffezzini C, Calvo-Garrido J, Wredenberg A, Freyer C (2020) Metabolic regulation of neurodifferentiation in the adult brain. '''Cell Mol Life Sci''' 77:2483-96. - [[Maffezzini 2020 Cell Mol Life Sci |»Bioblast link«]]
:::: '''2.47''' Maffezzini C, Calvo-Garrido J, Wredenberg A, Freyer C (2020) Metabolic regulation of neurodifferentiation in the adult brain. '''Cell Mol Life Sci''' 77:2483-96. - [[Maffezzini 2020 Cell Mol Life Sci |»Bioblast link«]]
:S2
 


:::::: [[File:Mantle 2021 Antioxidants (Basel) CORRECTION.png|400px|link=Mantle 2021 Antioxidants (Basel)]]
:::::: [[File:Mantle 2021 Antioxidants (Basel) CORRECTION.png|400px|link=Mantle 2021 Antioxidants (Basel)]]
:::: '''2.48''' Mantle D, Heaton RA, Hargreaves IP (2021) Coenzyme Q<sub>10</sub>, ageing and the nervous system: an overview. '''Antioxidants (Basel)''' 11:2. - [[Mantle 2021 Antioxidants (Basel) |»Bioblast link«]]
:::: '''2.48''' Mantle D, Heaton RA, Hargreaves IP (2021) Coenzyme Q<sub>10</sub>, ageing and the nervous system: an overview. '''Antioxidants (Basel)''' 11:2. - [[Mantle 2021 Antioxidants (Basel) |»Bioblast link«]]
:S2
 


:::::: [[File:Martinez-Reyes 2016 Mol Cell CORRECTION.png|400px|link=Martinez-Reyes 2016 Mol Cell]]
:::::: [[File:Martinez-Reyes 2016 Mol Cell CORRECTION.png|400px|link=Martinez-Reyes 2016 Mol Cell]]
:::: '''2.49''' Martínez-Reyes I, Diebold LP, Kong H, Schieber M, Huang H, Hensley CT, Mehta MM, Wang T, Santos JH, Woychik R, Dufour E, Spelbrink JN, Weinberg SE, Zhao Y, DeBerardinis RJ, Chandel NS (2016) TCA cycle and mitochondrial membrane potential are necessary for diverse biological functions. '''Mol Cell''' 61:199-209. - [[Martinez-Reyes 2016 Mol Cell |»Bioblast link«]]
:::: '''2.49''' Martínez-Reyes I, Diebold LP, Kong H, Schieber M, Huang H, Hensley CT, Mehta MM, Wang T, Santos JH, Woychik R, Dufour E, Spelbrink JN, Weinberg SE, Zhao Y, DeBerardinis RJ, Chandel NS (2016) TCA cycle and mitochondrial membrane potential are necessary for diverse biological functions. '''Mol Cell''' 61:199-209. - [[Martinez-Reyes 2016 Mol Cell |»Bioblast link«]]
:S2
 


:::::: [[File:Mathiyazakan 2023 Antimicrob Agents Chemother CORRECTION.png|400px|link=Mathiyazakan 2023 Antimicrob Agents Chemother]]
:::::: [[File:Mathiyazakan 2023 Antimicrob Agents Chemother CORRECTION.png|400px|link=Mathiyazakan 2023 Antimicrob Agents Chemother]]
:::: '''2.50''' Mathiyazakan V, Wong CF, Harikishore A, Pethe K, Grüber G (20) Cryo-electron microscopy structure of the Mycobacterium tuberculosis cytochrome ''bcc:aa''3 supercomplex and a novel inhibitor targeting subunit cytochrome ''c''I. '''Antimicrob Agents Chemother''' 67:e0153122. - [[Mathiyazakan 2023 Antimicrob Agents Chemother |»Bioblast link«]]
:::: '''2.50''' Mathiyazakan V, Wong CF, Harikishore A, Pethe K, Grüber G (20) Cryo-electron microscopy structure of the Mycobacterium tuberculosis cytochrome ''bcc:aa''3 supercomplex and a novel inhibitor targeting subunit cytochrome ''c''I. '''Antimicrob Agents Chemother''' 67:e0153122. - [[Mathiyazakan 2023 Antimicrob Agents Chemother |»Bioblast link«]]
:S2
 


:::::: [[File:Mathur 2017 Front Cell Neurosci CORRECTION.png|400px|link=Mathur 2017 Front Cell Neurosci]]
:::::: [[File:Mathur 2017 Front Cell Neurosci CORRECTION.png|400px|link=Mathur 2017 Front Cell Neurosci]]
:::: '''2.51''' Mathur D, Riffo-Campos AL, Castillo J, Haines JD, Vidaurre OG, Zhang F, Coret-Ferrer F, Casaccia P, Casanova B, Lopez-Rodas G (2017) Bioenergetic failure in rat oligodendrocyte progenitor cells treated with cerebrospinal fluid derived from multiple sclerosis poatients. '''Front Cell Neurosci''' 11:209. - [[Mathur 2017 Front Cell Neurosci |»Bioblast link«]]
:::: '''2.51''' Mathur D, Riffo-Campos AL, Castillo J, Haines JD, Vidaurre OG, Zhang F, Coret-Ferrer F, Casaccia P, Casanova B, Lopez-Rodas G (2017) Bioenergetic failure in rat oligodendrocyte progenitor cells treated with cerebrospinal fluid derived from multiple sclerosis poatients. '''Front Cell Neurosci''' 11:209. - [[Mathur 2017 Front Cell Neurosci |»Bioblast link«]]
:S2
 


:::::: [[File:McCollum 2019 Front Plant Sci CORRECTION.png|400px|link=McCollum 2019 Front Plant Sci]]
:::::: [[File:McCollum 2019 Front Plant Sci CORRECTION.png|400px|link=McCollum 2019 Front Plant Sci]]
:::: '''2.52''' McCollum C, Geißelsöder S, Engelsdorf T, Voitsik AM, Voll LM (2019) Deficiencies in the mitochondrial electron transport chain affect redox poise and resistance toward Colletotrichum higginsianum. '''Front Plant Sci''' 10:1262. - [[McCollum 2019 Front Plant Sci |»Bioblast link«]]
:::: '''2.52''' McCollum C, Geißelsöder S, Engelsdorf T, Voitsik AM, Voll LM (2019) Deficiencies in the mitochondrial electron transport chain affect redox poise and resistance toward Colletotrichum higginsianum. '''Front Plant Sci''' 10:1262. - [[McCollum 2019 Front Plant Sci |»Bioblast link«]]
:S2
 


:::::: [[File:McElroy 2017 Exp Cell Res.png|400px|link=McElroy 2017 Exp Cell Res]]
:::::: [[File:McElroy 2017 Exp Cell Res.png|400px|link=McElroy 2017 Exp Cell Res]]
:::: '''2.53''' McElroy GS, Chandel NS (2017) Mitochondria control acute and chronic responses to hypoxia. '''Exp Cell Res''' 356:217-22. - [[McElroy 2017 Exp Cell Res |»Bioblast link«]]
:::: '''2.53''' McElroy GS, Chandel NS (2017) Mitochondria control acute and chronic responses to hypoxia. '''Exp Cell Res''' 356:217-22. - [[McElroy 2017 Exp Cell Res |»Bioblast link«]]
:S2
 


:::::: [[File:McElroy 2020 Cell Metab CORRECTION.png|400px|link=McElroy 2020 Cell Metab]]
:::::: [[File:McElroy 2020 Cell Metab CORRECTION.png|400px|link=McElroy 2020 Cell Metab]]
:::: '''2.54''' McElroy GS, Reczek CR, Reyfman PA, Mithal DS, Horbinski CM, Chandel NS (2020) NAD+ regeneration rescues lifespan, but not ataxia, in a mouse model of brain mitochondrial Complex I dysfunction. '''Cell Metab''' 32:301-8.e6. - [[McElroy 2020 Cell Metab |»Bioblast link«]]
:::: '''2.54''' McElroy GS, Reczek CR, Reyfman PA, Mithal DS, Horbinski CM, Chandel NS (2020) NAD+ regeneration rescues lifespan, but not ataxia, in a mouse model of brain mitochondrial Complex I dysfunction. '''Cell Metab''' 32:301-8.e6. - [[McElroy 2020 Cell Metab |»Bioblast link«]]
:S2
 


:::::: [[File:Morelli 2019 Open Biol CORRECTION.png|400px|link=Morelli 2019 Open Biol]]
:::::: [[File:Morelli 2019 Open Biol CORRECTION.png|400px|link=Morelli 2019 Open Biol]]
:::: '''2.55''' Morelli AM, Ravera S, Calzia D, Panfoli I (2019) An update of the chemiosmotic theory as suggested by possible proton currents inside the coupling membrane. '''Open Biol''' 9:180221. - [[Morelli 2019 Open Biol |»Bioblast link«]]
:::: '''2.55''' Morelli AM, Ravera S, Calzia D, Panfoli I (2019) An update of the chemiosmotic theory as suggested by possible proton currents inside the coupling membrane. '''Open Biol''' 9:180221. - [[Morelli 2019 Open Biol |»Bioblast link«]]
:S2
 


:::::: [[File:Narine 2022 Front Cell Neurosci CORRECTION.png|400px|link=Narine 2022 Front Cell Neurosci]]
:::::: [[File:Narine 2022 Front Cell Neurosci CORRECTION.png|400px|link=Narine 2022 Front Cell Neurosci]]
:::: '''2.56''' Narine M, Colognato H (2022) Current insights into oligodendrocyte metabolism and its power to sculpt the myelin landscape. '''Front Cell Neurosci''' 16:892968. - [[Narine 2022 Front Cell Neurosci |»Bioblast link«]]
:::: '''2.56''' Narine M, Colognato H (2022) Current insights into oligodendrocyte metabolism and its power to sculpt the myelin landscape. '''Front Cell Neurosci''' 16:892968. - [[Narine 2022 Front Cell Neurosci |»Bioblast link«]]
:S2
 


:::::: [[File:Paprocka 2022 Metabolites CORRECTION.png|400px|link=Paprocka 2022 Metabolites]]
:::::: [[File:Paprocka 2022 Metabolites CORRECTION.png|400px|link=Paprocka 2022 Metabolites]]
:::: '''2.57''' Paprocka J, Nowak M, Chuchra P, Śmigiel R (2022) COQ8A-ataxia as a manifestation of primary coenzyme Q deficiency. '''Metabolites''' 12:955. - [[Paprocka 2022 Metabolites |»Bioblast link«]]
:::: '''2.57''' Paprocka J, Nowak M, Chuchra P, Śmigiel R (2022) COQ8A-ataxia as a manifestation of primary coenzyme Q deficiency. '''Metabolites''' 12:955. - [[Paprocka 2022 Metabolites |»Bioblast link«]]
:S2
 


:::::: [[File:Pena-Corona 2023 Front Pharmacol CORRECTION.png|400px|link=Pena-Corona 2023 Front Pharmacol]]
:::::: [[File:Pena-Corona 2023 Front Pharmacol CORRECTION.png|400px|link=Pena-Corona 2023 Front Pharmacol]]
:::: '''2.58''' Peña-Corona SI, Hernández-Parra H, Bernal-Chávez SA, Mendoza-Muñoz N, Romero-Montero A, Del Prado-Audelo ML, Cortés H, Ateşşahin DA, Habtemariam S, Almarhoon ZM, Abdull Razis AF, Modu B, Sharifi-Rad J, Leyva-Gómez G (2023) Neopeltolide and its synthetic derivatives: a promising new class of anticancer agents. '''Front Pharmacol''' 14:1206334. - [[Pena-Corona 2023 Front Pharmacol |»Bioblast link«]]
:::: '''2.58''' Peña-Corona SI, Hernández-Parra H, Bernal-Chávez SA, Mendoza-Muñoz N, Romero-Montero A, Del Prado-Audelo ML, Cortés H, Ateşşahin DA, Habtemariam S, Almarhoon ZM, Abdull Razis AF, Modu B, Sharifi-Rad J, Leyva-Gómez G (2023) Neopeltolide and its synthetic derivatives: a promising new class of anticancer agents. '''Front Pharmacol''' 14:1206334. - [[Pena-Corona 2023 Front Pharmacol |»Bioblast link«]]
:S2
 


:::::: [[File:Penjweini 2020 Redox Biol CORRECTION.png|400px|link=Penjweini 2020 Redox Biol]]
:::::: [[File:Penjweini 2020 Redox Biol CORRECTION.png|400px|link=Penjweini 2020 Redox Biol]]
:::: '''2.59''' Penjweini R, Roarke B, Alspaugh G, Gevorgyan A, Andreoni A, Pasut A, Sackett DL, Knutson JR (2020) Single cell-based fluorescence lifetime imaging of intracellular oxygenation and metabolism. '''Redox Biol''' 34:101549. - [[Penjweini 2020 Redox Biol |»Bioblast link«]]
:::: '''2.59''' Penjweini R, Roarke B, Alspaugh G, Gevorgyan A, Andreoni A, Pasut A, Sackett DL, Knutson JR (2020) Single cell-based fluorescence lifetime imaging of intracellular oxygenation and metabolism. '''Redox Biol''' 34:101549. - [[Penjweini 2020 Redox Biol |»Bioblast link«]]
:S2
 


:::::: [[File:Preston 2023 Academic Press CORRECTION.png|300px|link=Preston 2023 Academic Press]]
:::::: [[File:Preston 2023 Academic Press CORRECTION.png|300px|link=Preston 2023 Academic Press]]
:::: '''2.60''' Preston G, El Soufi El Sabbagh D, Emmerzaal TL, Morava E, Andreazza AC, Rahman S, Kozicz T (2023) Antidepressants, mood-stabilizing drugs, and mitochondrial functions: For better or for worse. In: de Oliveira MR (ed) Mitochondrial intoxication:323-49. '''Academic Press'''. - [[Preston 2023 Academic Press |»Bioblast link«]]
:::: '''2.60''' Preston G, El Soufi El Sabbagh D, Emmerzaal TL, Morava E, Andreazza AC, Rahman S, Kozicz T (2023) Antidepressants, mood-stabilizing drugs, and mitochondrial functions: For better or for worse. In: de Oliveira MR (ed) Mitochondrial intoxication:323-49. '''Academic Press'''. - [[Preston 2023 Academic Press |»Bioblast link«]]
:S2
 


:::::: [[File:Prochaska 2013 Springer CORRECTION.png|400px|link=Prochaska 2013 Springer]]
:::::: [[File:Prochaska 2013 Springer CORRECTION.png|400px|link=Prochaska 2013 Springer]]
:::: '''2.61''' Prochaska LJ, Cvetkov TL (2013) Mitochondrial electron transport. In: Roberts, G.C.K. (eds) Encyclopedia of Biophysics. '''Springer''', Berlin, Heidelberg. - [[Prochaska 2013 Springer |»Bioblast link«]]
:::: '''2.61''' Prochaska LJ, Cvetkov TL (2013) Mitochondrial electron transport. In: Roberts, G.C.K. (eds) Encyclopedia of Biophysics. '''Springer''', Berlin, Heidelberg. - [[Prochaska 2013 Springer |»Bioblast link«]]
:S2
 


:::::: [[File:Protasoni 2021 Int J Mol Sci CORRECTION.png|400px|link=Protasoni 2021 Int J Mol Sci]]
:::::: [[File:Protasoni 2021 Int J Mol Sci CORRECTION.png|400px|link=Protasoni 2021 Int J Mol Sci]]
:::: '''2.62''' Protasoni M, Zeviani M (2021) Mitochondrial structure and bioenergetics in normal and disease conditions. '''Int J Mol Sci''' 22:586. - [[Protasoni 2021 Int J Mol Sci |»Bioblast link«]]
:::: '''2.62''' Protasoni M, Zeviani M (2021) Mitochondrial structure and bioenergetics in normal and disease conditions. '''Int J Mol Sci''' 22:586. - [[Protasoni 2021 Int J Mol Sci |»Bioblast link«]]
:S2
 


:::::: [[File:Rahman 2022 Springer CORRECTION.png|400px|link=Rahman 2022 Springer]]
:::::: [[File:Rahman 2022 Springer CORRECTION.png|400px|link=Rahman 2022 Springer]]
:::: '''2.63''' Rahman S, Mayr JA (2022) Disorders of oxidative phosphorylation. In: Saudubray JM, Baumgartner MR, García-Cazorla Á, Walter J (eds) Inborn metabolic diseases. '''Springer''', Berlin, Heidelberg. - [[Rahman 2022 Springer |»Bioblast link«]]
:::: '''2.63''' Rahman S, Mayr JA (2022) Disorders of oxidative phosphorylation. In: Saudubray JM, Baumgartner MR, García-Cazorla Á, Walter J (eds) Inborn metabolic diseases. '''Springer''', Berlin, Heidelberg. - [[Rahman 2022 Springer |»Bioblast link«]]
:S2
 


:::::: [[File:Read 2021 Redox Biol CORRECTION.png|400px|link=Read 2021 Redox Biol]]
:::::: [[File:Read 2021 Redox Biol CORRECTION.png|400px|link=Read 2021 Redox Biol]]
:::: '''2.64''' Read AD, Bentley RE, Archer SL, Dunham-Snary KJ (2021) Mitochondrial iron-sulfur clusters: Structure, function, and an emerging role in vascular biology. '''Redox Biol''' 47:102164. - [[Read 2021 Redox Biol |»Bioblast link«]]
:::: '''2.64''' Read AD, Bentley RE, Archer SL, Dunham-Snary KJ (2021) Mitochondrial iron-sulfur clusters: Structure, function, and an emerging role in vascular biology. '''Redox Biol''' 47:102164. - [[Read 2021 Redox Biol |»Bioblast link«]]
:S2
 


:::::: [[File:Risiglione 2020 Int J Mol Sci CORRECTION.png|400px|link=Risiglione 2020 Int J Mol Sci]]
:::::: [[File:Risiglione 2020 Int J Mol Sci CORRECTION.png|400px|link=Risiglione 2020 Int J Mol Sci]]
:::: '''2.65''' Risiglione P, Leggio L, Cubisino SAM, Reina S, Paternò G, Marchetti B, Magrì A, Iraci N, Messina A (2020) High-resolution respirometry reveals MPP+ mitochondrial toxicity mechanism in a cellular model of parkinson's disease. '''Int J Mol Sci''' 21:E7809. - [[Risiglione 2020 Int J Mol Sci |»Bioblast link«]]
:::: '''2.65''' Risiglione P, Leggio L, Cubisino SAM, Reina S, Paternò G, Marchetti B, Magrì A, Iraci N, Messina A (2020) High-resolution respirometry reveals MPP+ mitochondrial toxicity mechanism in a cellular model of parkinson's disease. '''Int J Mol Sci''' 21:E7809. - [[Risiglione 2020 Int J Mol Sci |»Bioblast link«]]
:S2
 


:::::: [[File:Rodick 2018 Nutrition and Dietary Supplements CORRECTION.png|400px|link=Rodick 2018 Nutrition and Dietary Supplements]]
:::::: [[File:Rodick 2018 Nutrition and Dietary Supplements CORRECTION.png|400px|link=Rodick 2018 Nutrition and Dietary Supplements]]
:::: '''2.66''' Rodick TC, Seibels DR, Babu JR, Huggins KW, Ren G, Mathews ST (2018) Potential role of coenzyme Q10 in health and disease conditions. '''Nutrition and Dietary Supplements''' 10:1-11. - [[Rodick 2018 Nutrition and Dietary Supplements |»Bioblast link«]]
:::: '''2.66''' Rodick TC, Seibels DR, Babu JR, Huggins KW, Ren G, Mathews ST (2018) Potential role of coenzyme Q10 in health and disease conditions. '''Nutrition and Dietary Supplements''' 10:1-11. - [[Rodick 2018 Nutrition and Dietary Supplements |»Bioblast link«]]
:S2
 


:::::: [[File:Sarmah 2019 Transl Stroke Res CORRECTION.png|400px|link=Sarmah 2019 Transl Stroke Res]]
:::::: [[File:Sarmah 2019 Transl Stroke Res CORRECTION.png|400px|link=Sarmah 2019 Transl Stroke Res]]
:::: '''2.67''' Sarmah D, Kaur H, Saraf J, Vats K, Pravalika K, Wanve M, Kalia K, Borah A, Kumar A, Wang X, Yavagal DR, Dave KR, Bhattacharya P (2019) Mitochondrial dysfunction in stroke: implications of stem cell therapy. '''Transl Stroke Res''' doi: 10.1007/s12975-018-0642-y - [[Sarmah 2019 Transl Stroke Res |»Bioblast link«]]
:::: '''2.67''' Sarmah D, Kaur H, Saraf J, Vats K, Pravalika K, Wanve M, Kalia K, Borah A, Kumar A, Wang X, Yavagal DR, Dave KR, Bhattacharya P (2019) Mitochondrial dysfunction in stroke: implications of stem cell therapy. '''Transl Stroke Res''' doi: 10.1007/s12975-018-0642-y - [[Sarmah 2019 Transl Stroke Res |»Bioblast link«]]


:::::: [[File:Sharma 2021 Int J Mol Sci CORRECTION.png|400px|link=Sharma 2021 Int J Mol Sci]]
:::::: [[File:Sharma 2021 Int J Mol Sci CORRECTION.png|400px|link=Sharma 2021 Int J Mol Sci]]
:::: '''2.68''' Sharma C, Kim S, Nam Y, Jung UJ, Kim SR (2021) Mitochondrial dysfunction as a driver of cognitive impairment in Alzheimer's disease. '''Int J Mol Sci''' 22:4850. - [[Sharma 2021 Int J Mol Sci |»Bioblast link«]]
:::: '''2.68''' Sharma C, Kim S, Nam Y, Jung UJ, Kim SR (2021) Mitochondrial dysfunction as a driver of cognitive impairment in Alzheimer's disease. '''Int J Mol Sci''' 22:4850. - [[Sharma 2021 Int J Mol Sci |»Bioblast link«]]
:S2
 


:::::: [[File:Shu 2023 Front Immunol CORRECTION.png|400px|link=Shu 2023 Front Immunol]]
:::::: [[File:Shu 2023 Front Immunol CORRECTION.png|400px|link=Shu 2023 Front Immunol]]
:::: '''2.69''' Shu P, Liang H, Zhang J, Lin Y, Chen W, Zhang D (2023) Reactive oxygen species formation and its effect on CD4+ T cell-mediated inflammation. '''Front Immunol''' 14:1199233. - [[Shu 2023 Front Immunol |»Bioblast link«]]
:::: '''2.69''' Shu P, Liang H, Zhang J, Lin Y, Chen W, Zhang D (2023) Reactive oxygen species formation and its effect on CD4+ T cell-mediated inflammation. '''Front Immunol''' 14:1199233. - [[Shu 2023 Front Immunol |»Bioblast link«]]
:S2
 


:::::: [[File:Simon 2022 Function (Oxf) CORRECTION.png|400px|link=Simon 2022 Function (Oxf)]]
:::::: [[File:Simon 2022 Function (Oxf) CORRECTION.png|400px|link=Simon 2022 Function (Oxf)]]
:::: '''2.70''' Simon L, Molina PE (2022) Cellular bioenergetics: experimental evidence for alcohol-induced adaptations. '''Function (Oxf)''' 3:zqac039. - [[Simon 2022 Function (Oxf) |»Bioblast link«]]
:::: '''2.70''' Simon L, Molina PE (2022) Cellular bioenergetics: experimental evidence for alcohol-induced adaptations. '''Function (Oxf)''' 3:zqac039. - [[Simon 2022 Function (Oxf) |»Bioblast link«]]
:S2
 


:::::: [[File:Smith 2023 Nat Rev Mol Cell Biol CORRECTION.png|400px|link=Smith 2023 Nat Rev Mol Cell Biol]]
:::::: [[File:Smith 2023 Nat Rev Mol Cell Biol CORRECTION.png|400px|link=Smith 2023 Nat Rev Mol Cell Biol]]
:::: '''2.71''' Smith JAB, Murach KA, Dyar KA, Zierath JR (2023) Exercise metabolism and adaptation in skeletal muscle. '''Nat Rev Mol Cell Biol''' 24:607-32. - [[Smith 2023 Nat Rev Mol Cell Biol |»Bioblast link«]]
:::: '''2.71''' Smith JAB, Murach KA, Dyar KA, Zierath JR (2023) Exercise metabolism and adaptation in skeletal muscle. '''Nat Rev Mol Cell Biol''' 24:607-32. - [[Smith 2023 Nat Rev Mol Cell Biol |»Bioblast link«]]
:S2
 


:::::: [[File:Sommer 2020 Sci Adv CORRECTION.png|400px|link=Sommer 2020 Sci Adv]]
:::::: [[File:Sommer 2020 Sci Adv CORRECTION.png|400px|link=Sommer 2020 Sci Adv]]
:::: '''2.72''' Sommer N, Alebrahimdehkordi N, Pak O, Knoepp F, Strielkov I, Scheibe S, Dufour E, Andjelekovic A, Sydykov A, Saraji A, Petrovic A, Quanz K, Hecker M, Kumar M, Wahl J, Kraut S, Seeger W, Schermuly RT, Ghofrani HA, Ramser K, Braun T, Jacobs HT, Weissmann N, Szibor M (2020) Bypassing mitochondrial complex III using alternative oxidase inhibits acute pulmonary oxygen sensing. '''Sci Adv''' 6:eaba0694. - [[Sommer 2020 Sci Adv |»Bioblast link«]]
:::: '''2.72''' Sommer N, Alebrahimdehkordi N, Pak O, Knoepp F, Strielkov I, Scheibe S, Dufour E, Andjelekovic A, Sydykov A, Saraji A, Petrovic A, Quanz K, Hecker M, Kumar M, Wahl J, Kraut S, Seeger W, Schermuly RT, Ghofrani HA, Ramser K, Braun T, Jacobs HT, Weissmann N, Szibor M (2020) Bypassing mitochondrial complex III using alternative oxidase inhibits acute pulmonary oxygen sensing. '''Sci Adv''' 6:eaba0694. - [[Sommer 2020 Sci Adv |»Bioblast link«]]
:S2
 


:::::: [[File:Spinelli 2018 Nat Cell Biol CORRECTION.png|400px|link=Spinelli 2018 Nat Cell Biol]]
:::::: [[File:Spinelli 2018 Nat Cell Biol CORRECTION.png|400px|link=Spinelli 2018 Nat Cell Biol]]
:::: '''2.73''' Spinelli JB, Haigis MC (2018) The multifaceted contributions of mitochondria to cellular metabolism. '''Nat Cell Biol''' 20:745-54. - [[Spinelli 2018 Nat Cell Biol |»Bioblast link«]]
:::: '''2.73''' Spinelli JB, Haigis MC (2018) The multifaceted contributions of mitochondria to cellular metabolism. '''Nat Cell Biol''' 20:745-54. - [[Spinelli 2018 Nat Cell Biol |»Bioblast link«]]
:S2
 


:::::: [[File:Srivastava 2016 Clin Transl Med CORRECTION.png|400px|link=Srivastava 2016 Clin Transl Med]]
:::::: [[File:Srivastava 2016 Clin Transl Med CORRECTION.png|400px|link=Srivastava 2016 Clin Transl Med]]
:::: '''2.74''' Srivastava S (2016) Emerging therapeutic roles for NAD(+) metabolism in mitochondrial and age-related disorders. '''Clin Transl Med''' 5:25. - [[Srivastava 2016 Clin Transl Med |»Bioblast link«]]
:::: '''2.74''' Srivastava S (2016) Emerging therapeutic roles for NAD(+) metabolism in mitochondrial and age-related disorders. '''Clin Transl Med''' 5:25. - [[Srivastava 2016 Clin Transl Med |»Bioblast link«]]
:S2
 


:::::: [[File:Szabo 2020 Int J Mol Sci CORRECTION.png|400px|link=Szabo 2020 Int J Mol Sci]]
:::::: [[File:Szabo 2020 Int J Mol Sci CORRECTION.png|400px|link=Szabo 2020 Int J Mol Sci]]
:::: '''2.75''' Szabo L, Eckert A, Grimm A (2020) Insights into disease-associated tau impact on mitochondria. '''Int J Mol Sci''' 21:6344. - [[Szabo 2020 Int J Mol Sci |»Bioblast link«]]
:::: '''2.75''' Szabo L, Eckert A, Grimm A (2020) Insights into disease-associated tau impact on mitochondria. '''Int J Mol Sci''' 21:6344. - [[Szabo 2020 Int J Mol Sci |»Bioblast link«]]
:S2
 


:::::: [[File:Tang 2014 Front Physiol CORRECTION.png|400px|link=Tang 2014 Front Physiol]]
:::::: [[File:Tang 2014 Front Physiol CORRECTION.png|400px|link=Tang 2014 Front Physiol]]
:::: '''2.76''' Tang X, Luo YX, Chen HZ, Liu DP (2014) Mitochondria, endothelial cell function, and vascular diseases. '''Front Physiol''' 5:175. - [[Tang 2014 Front Physiol |»Bioblast link«]]
:::: '''2.76''' Tang X, Luo YX, Chen HZ, Liu DP (2014) Mitochondria, endothelial cell function, and vascular diseases. '''Front Physiol''' 5:175. - [[Tang 2014 Front Physiol |»Bioblast link«]]
:S2
 


:::::: [[File:Thomas 2019 Cell Mol Life Sci CORRECTION.png|400px|link=Thomas 2019 Cell Mol Life Sci]]
:::::: [[File:Thomas 2019 Cell Mol Life Sci CORRECTION.png|400px|link=Thomas 2019 Cell Mol Life Sci]]
:::: '''2.77''' Thomas LW, Ashcroft M (2019) Exploring the molecular interface between hypoxia-inducible factor signalling and mitochondria. '''Cell Mol Life Sci''' 76:1759-77. - [[Thomas 2019 Cell Mol Life Sci |»Bioblast link«]]
:::: '''2.77''' Thomas LW, Ashcroft M (2019) Exploring the molecular interface between hypoxia-inducible factor signalling and mitochondria. '''Cell Mol Life Sci''' 76:1759-77. - [[Thomas 2019 Cell Mol Life Sci |»Bioblast link«]]
:S2
 


:::::: [[File:Tian 2017 Front Genet CORRECTION.png|400px|link=Tian 2017 Front Genet]]
:::::: [[File:Tian 2017 Front Genet CORRECTION.png|400px|link=Tian 2017 Front Genet]]
:::: '''2.78''' Tian R, Yin D, Liu Y, Seim I, Xu S, Yang G (2017) Adaptive evolution of energy metabolism-related genes in hypoxia-tolerant mammals. '''Front Genet''' 8:205. - [[Tian 2017 Front Genet |»Bioblast link«]]
:::: '''2.78''' Tian R, Yin D, Liu Y, Seim I, Xu S, Yang G (2017) Adaptive evolution of energy metabolism-related genes in hypoxia-tolerant mammals. '''Front Genet''' 8:205. - [[Tian 2017 Front Genet |»Bioblast link«]]
:S2
 


:::::: [[File:Tirichen 2021 Front Physiol CORRECTION.png|400px|link=Tirichen 2021 Front Physiol]]
:::::: [[File:Tirichen 2021 Front Physiol CORRECTION.png|400px|link=Tirichen 2021 Front Physiol]]
:::: '''2.79''' Tirichen H, Yaigoub H, Xu W, Wu C, Li R, Li Y (2021) Mitochondrial reactive oxygen species and their contribution in chronic kidney disease progression through oxidative stress. '''Front Physiol''' 12:627837. - [[Tirichen 2021 Front Physiol |»Bioblast link«]]
:::: '''2.79''' Tirichen H, Yaigoub H, Xu W, Wu C, Li R, Li Y (2021) Mitochondrial reactive oxygen species and their contribution in chronic kidney disease progression through oxidative stress. '''Front Physiol''' 12:627837. - [[Tirichen 2021 Front Physiol |»Bioblast link«]]
:S2
 


:::::: [[File:Turton 2022 Int J Mol Sci CORRECTION.png|400px|link=Turton 2022 Int J Mol Sci]]
:::::: [[File:Turton 2022 Int J Mol Sci CORRECTION.png|400px|link=Turton 2022 Int J Mol Sci]]
:::: '''2.80''' Turton N, Cufflin N, Dewsbury M, Fitzpatrick O, Islam R, Watler LL, McPartland C, Whitelaw S, Connor C, Morris C, Fang J, Gartland O, Holt L, Hargreaves IP (2022) The biochemical assessment of mitochondrial respiratory chain disorders. '''Int J Mol Sci''' 23:7487. - [[Turton 2022 Int J Mol Sci |»Bioblast link«]]
:::: '''2.80''' Turton N, Cufflin N, Dewsbury M, Fitzpatrick O, Islam R, Watler LL, McPartland C, Whitelaw S, Connor C, Morris C, Fang J, Gartland O, Holt L, Hargreaves IP (2022) The biochemical assessment of mitochondrial respiratory chain disorders. '''Int J Mol Sci''' 23:7487. - [[Turton 2022 Int J Mol Sci |»Bioblast link«]]
:S2
 


:::::: [[File:Vayalil 2019 Oncol Lett CORRECTION.png|400px|link=Vayalil 2019 Oncol Lett]]
:::::: [[File:Vayalil 2019 Oncol Lett CORRECTION.png|400px|link=Vayalil 2019 Oncol Lett]]
:::: '''2.81''' Vayalil PK (2019) Mitochondrial oncobioenergetics of prostate tumorigenesis. '''Oncol Lett''' 18:4367-76. - [[Vayalil 2019 Oncol Lett |»Bioblast link«]]
:::: '''2.81''' Vayalil PK (2019) Mitochondrial oncobioenergetics of prostate tumorigenesis. '''Oncol Lett''' 18:4367-76. - [[Vayalil 2019 Oncol Lett |»Bioblast link«]]
:S2
 


:::::: [[File:Vekshin 2020 Springer Cham CORRECTION.png|400px|link=Vekshin 2020 Springer Cham]]
:::::: [[File:Vekshin 2020 Springer Cham CORRECTION.png|400px|link=Vekshin 2020 Springer Cham]]
:::: '''2.82''' Vekshin N (2020) Biophysics of mitochondria. '''Springer Cham''': 197 pp. - [[Vekshin 2020 Springer Cham |»Bioblast link«]]
:::: '''2.82''' Vekshin N (2020) Biophysics of mitochondria. '''Springer Cham''': 197 pp. - [[Vekshin 2020 Springer Cham |»Bioblast link«]]
:S2
 


:::::: [[File:Wang 2016 ACS Appl Mater Interfaces CORRECTION.png|400px|link=Wang 2016 ACS Appl Mater Interfaces]]
:::::: [[File:Wang 2016 ACS Appl Mater Interfaces CORRECTION.png|400px|link=Wang 2016 ACS Appl Mater Interfaces]]
:::: '''2.83''' Wang G, Feng H, Gao A, Hao Q, Jin W, Peng X, Li W, Wu G, Chu PK (2016) Extracellular electron transfer from aerobic bacteria to Au-loaded TiO2 semiconductor without light: a new bacteria-killing mechanism other than localized surface plasmon resonance or microbial fuel cells. '''ACS Appl Mater Interfaces''' 8:24509-16. - [[Wang 2016 ACS Appl Mater Interfaces |»Bioblast link«]]
:::: '''2.83''' Wang G, Feng H, Gao A, Hao Q, Jin W, Peng X, Li W, Wu G, Chu PK (2016) Extracellular electron transfer from aerobic bacteria to Au-loaded TiO2 semiconductor without light: a new bacteria-killing mechanism other than localized surface plasmon resonance or microbial fuel cells. '''ACS Appl Mater Interfaces''' 8:24509-16. - [[Wang 2016 ACS Appl Mater Interfaces |»Bioblast link«]]
:S2
 


:::::: [[File:Wipf 2022 J Huntingtons Dis CORRECTION.png|400px|link=Wipf 2022 J Huntingtons Dis]]
:::::: [[File:Wipf 2022 J Huntingtons Dis CORRECTION.png|400px|link=Wipf 2022 J Huntingtons Dis]]
:::: '''2.84''' Wipf P, Polyzos AA, McMurray CT (2022) A double-pronged sword: XJB-5-131 is a suppressor of somatic instability and toxicity in Huntington's disease. '''J Huntingtons Dis''' 11:3-15. - [[Wipf 2022 J Huntingtons Dis |»Bioblast link«]]
:::: '''2.84''' Wipf P, Polyzos AA, McMurray CT (2022) A double-pronged sword: XJB-5-131 is a suppressor of somatic instability and toxicity in Huntington's disease. '''J Huntingtons Dis''' 11:3-15. - [[Wipf 2022 J Huntingtons Dis |»Bioblast link«]]
:S2
 


:::::: [[File:Xia 2022 Front Oncol CORRECTION.png|500px|link=Xia 2022 Front Oncol]]
:::::: [[File:Xia 2022 Front Oncol CORRECTION.png|500px|link=Xia 2022 Front Oncol]]
:::: '''2.85''' Xia H, Huang Z, Wang Z, Liu S, Zhao X, You J, Xu Y, Yam JWP, Cui Y (2022) Glucometabolic reprogramming: From trigger to therapeutic target in hepatocellular carcinoma. '''Front Oncol''' 12:953668. - [[Xia 2022 Front Oncol |»Bioblast link«]]
:::: '''2.85''' Xia H, Huang Z, Wang Z, Liu S, Zhao X, You J, Xu Y, Yam JWP, Cui Y (2022) Glucometabolic reprogramming: From trigger to therapeutic target in hepatocellular carcinoma. '''Front Oncol''' 12:953668. - [[Xia 2022 Front Oncol |»Bioblast link«]]
:S2
 


:::::: [[File:Yang 2022 Front Cell Dev Biol CORRECTION.png|400px|link=Yang 2022 Front Cell Dev Biol]]
:::::: [[File:Yang 2022 Front Cell Dev Biol CORRECTION.png|400px|link=Yang 2022 Front Cell Dev Biol]]
:::: '''2.86''' Yang J, Guo Q, Feng X, Liu Y, Zhou Y (2022) Mitochondrial dysfunction in cardiovascular diseases: potential targets for treatment. '''Front Cell Dev Biol''' 10:841523. - [[Yang 2022 Front Cell Dev Biol |»Bioblast link«]]
:::: '''2.86''' Yang J, Guo Q, Feng X, Liu Y, Zhou Y (2022) Mitochondrial dysfunction in cardiovascular diseases: potential targets for treatment. '''Front Cell Dev Biol''' 10:841523. - [[Yang 2022 Front Cell Dev Biol |»Bioblast link«]]
:S2
 


:::::: [[File:Yepez 2018 PLOS One Fig1B.jpg|400px|link=Yepez 2018 PLOS One]]
:::::: [[File:Yepez 2018 PLOS One Fig1B.jpg|400px|link=Yepez 2018 PLOS One]]
:::: '''2.87''' Yépez VA, Kremer LS, Iuso A, Gusic M, Kopajtich R, Koňaříková E, Nadel A, Wachutka L, Prokisch H, Gagneur J (2018) OCR-Stats: Robust estimation and statistical testing of mitochondrial respiration activities using Seahorse XF Analyzer. '''PLOS ONE''' 13:e0199938. - [[Yepez 2018 PLOS One |»Bioblast link«]]
:::: '''2.87''' Yépez VA, Kremer LS, Iuso A, Gusic M, Kopajtich R, Koňaříková E, Nadel A, Wachutka L, Prokisch H, Gagneur J (2018) OCR-Stats: Robust estimation and statistical testing of mitochondrial respiration activities using Seahorse XF Analyzer. '''PLOS ONE''' 13:e0199938. - [[Yepez 2018 PLOS One |»Bioblast link«]]
:S2
 


:::::: [[File:Yuan 2022 Oxid Med Cell Longev CORRECTION.png|400px|link=Yuan 2022 Oxid Med Cell Longev]]
:::::: [[File:Yuan 2022 Oxid Med Cell Longev CORRECTION.png|400px|link=Yuan 2022 Oxid Med Cell Longev]]
:::: '''2.88''' Yuan Q, Zeng ZL, Yang S, Li A, Zu X, Liu J (2022) Mitochondrial stress in metabolic inflammation: modest benefits and full losses. '''Oxid Med Cell Longev''' 2022:8803404. - [[Yuan 2022 Oxid Med Cell Longev |»Bioblast link«]]
:::: '''2.88''' Yuan Q, Zeng ZL, Yang S, Li A, Zu X, Liu J (2022) Mitochondrial stress in metabolic inflammation: modest benefits and full losses. '''Oxid Med Cell Longev''' 2022:8803404. - [[Yuan 2022 Oxid Med Cell Longev |»Bioblast link«]]
:S2
 


:::::: [[File:Zhang 2018 Mil Med Res CORRECTION.png|400px|link=Zhang 2018 Mil Med Res]]
:::::: [[File:Zhang 2018 Mil Med Res CORRECTION.png|400px|link=Zhang 2018 Mil Med Res]]
:::: '''2.89''' Zhang H, Feng YW, Yao YM (2018) Potential therapy strategy: targeting mitochondrial dysfunction in sepsis. '''Mil Med Res''' 5:41. - [[Zhang 2018 Mil Med Res |»Bioblast link«]]
:::: '''2.89''' Zhang H, Feng YW, Yao YM (2018) Potential therapy strategy: targeting mitochondrial dysfunction in sepsis. '''Mil Med Res''' 5:41. - [[Zhang 2018 Mil Med Res |»Bioblast link«]]
:S2
 


=== FADH<sub>2</sub> ⟶ ===
=== FADH<sub>2</sub> ⟶ ===
Line 650: Line 652:
:::::: [[File:Alegre 2019 Am J Transplant CORRECTION.png|400px|link=Alegre 2019 Am J Transplant]]
:::::: [[File:Alegre 2019 Am J Transplant CORRECTION.png|400px|link=Alegre 2019 Am J Transplant]]
:::: '''3.1''' Alegre ML (2019) Treg respiration. '''Am J Transplant''' 19:969. - [[Alegre 2019 Am J Transplant |»Bioblast link«]]
:::: '''3.1''' Alegre ML (2019) Treg respiration. '''Am J Transplant''' 19:969. - [[Alegre 2019 Am J Transplant |»Bioblast link«]]
:S3
 


:::::: [[File:Ali 2023 Trends Cell Biol CORRECTION.png|400px|link=Ali 2023 Trends Cell Biol]]
:::::: [[File:Ali 2023 Trends Cell Biol CORRECTION.png|400px|link=Ali 2023 Trends Cell Biol]]
:::: '''3.2''' Ali ES, Ben-Sahra I (2023) Regulation of nucleotide metabolism in cancers and immune disorders. '''Trends Cell Biol''' 33:950-66. - [[Ali 2023 Trends Cell Biol |»Bioblast link«]]
:::: '''3.2''' Ali ES, Ben-Sahra I (2023) Regulation of nucleotide metabolism in cancers and immune disorders. '''Trends Cell Biol''' 33:950-66. - [[Ali 2023 Trends Cell Biol |»Bioblast link«]]
:S3
 


:::::: [[File:Balaban 2005 Cell CORRECTION.png|400px|link=Balaban 2005 Cell]]
:::::: [[File:Balaban 2005 Cell CORRECTION.png|400px|link=Balaban 2005 Cell]]
:::: '''3.3''' Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. '''Cell''' 120:483-95. - [[Balaban 2005 Cell |»Bioblast link«]]
:::: '''3.3''' Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. '''Cell''' 120:483-95. - [[Balaban 2005 Cell |»Bioblast link«]]
:S3
 


:::::: [[File:Bansal 2019 Academic Press CORRECTED.png|400px|link=Bansal 2019 Academic Press]]
:::::: [[File:Bansal 2019 Academic Press CORRECTED.png|400px|link=Bansal 2019 Academic Press]]
:::: '''3.4''' Bansal A, Rashid C, Simmons RA (2019) Impact of fetal programming on mitochondrial function and susceptibility to obesity and type 2 diabetes. Academic Press In: Mitochondria in obesity and type 2 diabetes. Morio B, Pénicaud L, Rigoulet M (eds) '''Academic Press'''. - [[Bansal 2019 Academic Press |»Bioblast link«]]
:::: '''3.4''' Bansal A, Rashid C, Simmons RA (2019) Impact of fetal programming on mitochondrial function and susceptibility to obesity and type 2 diabetes. Academic Press In: Mitochondria in obesity and type 2 diabetes. Morio B, Pénicaud L, Rigoulet M (eds) '''Academic Press'''. - [[Bansal 2019 Academic Press |»Bioblast link«]]
:S3
 


:::::: [[File:Benard 2011 Springer 2.4 CORRECTION.png|400px|link=Benard 2011 Springer]]
:::::: [[File:Benard 2011 Springer 2.4 CORRECTION.png|400px|link=Benard 2011 Springer]]
:::: '''3.5''' Benard G, Bellance N, Jose C, Rossignol R (2011) Relationships between mitochondrial dynamics and bioenergetics. In: Lu Bingwei (ed) Mitochondrial dynamics and neurodegeneration. '''Springer''' ISBN 978-94-007-1290-4:47-68. - [[Benard 2011 Springer |»Bioblast link«]]
:::: '''3.5''' Benard G, Bellance N, Jose C, Rossignol R (2011) Relationships between mitochondrial dynamics and bioenergetics. In: Lu Bingwei (ed) Mitochondrial dynamics and neurodegeneration. '''Springer''' ISBN 978-94-007-1290-4:47-68. - [[Benard 2011 Springer |»Bioblast link«]]
:S3
 


:::::: [[File:Bertero 2018 Nat Rev Cardiol CORRECTION.png|400px|link=Bertero 2018 Nat Rev Cardiol]]
:::::: [[File:Bertero 2018 Nat Rev Cardiol CORRECTION.png|400px|link=Bertero 2018 Nat Rev Cardiol]]
:::: '''3.6''' Bertero E, Maack C (2018) Metabolic remodelling in heart failure. '''Nat Rev Cardiol''' 15:457-70. - [[Bertero 2018 Nat Rev Cardiol |»Bioblast link«]]
:::: '''3.6''' Bertero E, Maack C (2018) Metabolic remodelling in heart failure. '''Nat Rev Cardiol''' 15:457-70. - [[Bertero 2018 Nat Rev Cardiol |»Bioblast link«]]
:S3
 


:::::: [[File:Bertero 2022 Function (Oxf) CORRECTION.png|400px|link=Bertero 2022 Function (Oxf)]]
:::::: [[File:Bertero 2022 Function (Oxf) CORRECTION.png|400px|link=Bertero 2022 Function (Oxf)]]
:::: '''3.7''' Bertero E, Maack C (2022) Rethinking Mitchell's chemiosmotic theory: potassium dominates over proton flux to drive mitochondrial F1Fo-ATP synthase. '''Function (Oxf)''' 3:zqac012. - [[Bertero 2022 Function (Oxf) |»Bioblast link«]]
:::: '''3.7''' Bertero E, Maack C (2022) Rethinking Mitchell's chemiosmotic theory: potassium dominates over proton flux to drive mitochondrial F1Fo-ATP synthase. '''Function (Oxf)''' 3:zqac012. - [[Bertero 2022 Function (Oxf) |»Bioblast link«]]
:S3
 


:::::: [[File:Breuer 2013 Neurobiol Dis CORRECTION.png|400px|link=Breuer 2013 Neurobiol Dis]]
:::::: [[File:Breuer 2013 Neurobiol Dis CORRECTION.png|400px|link=Breuer 2013 Neurobiol Dis]]
:::: '''3.8''' Breuer ME, Koopman WJ, Koene S, Nooteboom M, Rodenburg RJ, Willems PH, Smeitink JA (2013) The role of mitochondrial OXPHOS dysfunction in the development of neurologic diseases. Neurobiol Dis 51:27-34. - [[Breuer 2013 Neurobiol Dis |»Bioblast link«]]
:::: '''3.8''' Breuer ME, Koopman WJ, Koene S, Nooteboom M, Rodenburg RJ, Willems PH, Smeitink JA (2013) The role of mitochondrial OXPHOS dysfunction in the development of neurologic diseases. Neurobiol Dis 51:27-34. - [[Breuer 2013 Neurobiol Dis |»Bioblast link«]]
:S3
 


:::::: [[File:Chang 2023 Front Endocrinol (Lausanne) CORRECTION.png|400px|link=Chang 2023 Front Endocrinol (Lausanne)]]
:::::: [[File:Chang 2023 Front Endocrinol (Lausanne) CORRECTION.png|400px|link=Chang 2023 Front Endocrinol (Lausanne)]]
:::: '''3.9''' Chang JS (2023) Recent insights into the molecular mechanisms of simultaneous fatty acid oxidation and synthesis in brown adipocytes. '''Front Endocrinol (Lausanne)''' 14:1106544. - [[Chang 2023 Front Endocrinol (Lausanne) |»Bioblast link«]]
:::: '''3.9''' Chang JS (2023) Recent insights into the molecular mechanisms of simultaneous fatty acid oxidation and synthesis in brown adipocytes. '''Front Endocrinol (Lausanne)''' 14:1106544. - [[Chang 2023 Front Endocrinol (Lausanne) |»Bioblast link«]]
:S3
 


:::::: [[File:Chen 2014 Circ Res CORRECTION.png|400px|link=Chen 2014 Circ Res]]
:::::: [[File:Chen 2014 Circ Res CORRECTION.png|400px|link=Chen 2014 Circ Res]]
:::: '''3.10''' Chen YR, Zweier JL (2014) Cardiac mitochondria and reactive oxygen species generation. '''Circ Res''' 114:524-37. - [[Chen 2014 Circ Res |»Bioblast link«]]
:::: '''3.10''' Chen YR, Zweier JL (2014) Cardiac mitochondria and reactive oxygen species generation. '''Circ Res''' 114:524-37. - [[Chen 2014 Circ Res |»Bioblast link«]]
:::::* '''3.11''' Copied (without reference) by: Chen CL, Zhang L, Jin Z, Kasumov T, Chen YR (2022) Mitochondrial redox regulation and myocardial ischemia-reperfusion injury. '''Am J Physiol Cell Physiol''' 322:C12-23. - [[Chen 2022 Am J Physiol Cell Physiol |»Bioblast link«]]
:::::* '''3.11''' Copied (without reference) by: Chen CL, Zhang L, Jin Z, Kasumov T, Chen YR (2022) Mitochondrial redox regulation and myocardial ischemia-reperfusion injury. '''Am J Physiol Cell Physiol''' 322:C12-23. - [[Chen 2022 Am J Physiol Cell Physiol |»Bioblast link«]]
:S3
 


:::::: [[File:Chowdhury 2018 Oxid Med Cell Longev CORRECTION.png|400px|link=Chowdhury 2018 Oxid Med Cell Longev]]
:::::: [[File:Chowdhury 2018 Oxid Med Cell Longev CORRECTION.png|400px|link=Chowdhury 2018 Oxid Med Cell Longev]]
:::: '''3.12''' Roy Chowdhury S, Banerji V (2018) Targeting mitochondrial bioenergetics as a therapeutic strategy for chronic lymphocytic leukemia. '''Oxid Med Cell Longev''' 2018:2426712. - [[Chowdhury 2018 Oxid Med Cell Longev |»Bioblast link«]]
:::: '''3.12''' Roy Chowdhury S, Banerji V (2018) Targeting mitochondrial bioenergetics as a therapeutic strategy for chronic lymphocytic leukemia. '''Oxid Med Cell Longev''' 2018:2426712. - [[Chowdhury 2018 Oxid Med Cell Longev |»Bioblast link«]]
:S3
 


:::::: [[File:Connolly 2018 Cell Death Differ CORRECTION.png|400px|link=Connolly 2018 Cell Death Differ]]
:::::: [[File:Connolly 2018 Cell Death Differ CORRECTION.png|400px|link=Connolly 2018 Cell Death Differ]]
:::: '''3.13''' Connolly NMC, Theurey P, Adam-Vizi V, Bazan NG, Bernardi P, Bolaños JP, Culmsee C, Dawson VL, Deshmukh M, Duchen MR, Düssmann H, Fiskum G, Galindo MF, Hardingham GE, Hardwick JM, Jekabsons MB, Jonas EA, Jordán J, Lipton SA, Manfredi G, Mattson MP, McLaughlin B, Methner A, Murphy AN, Murphy MP, Nicholls DG, Polster BM, Pozzan T, Rizzuto R, Satrústegui J, Slack RS, Swanson RA, Swerdlow RH, Will Y, Ying Z, Joselin A, Gioran A, Moreira Pinho C, Watters O, Salvucci M, Llorente-Folch I, Park DS, Bano D, Ankarcrona M, Pizzo P, Prehn JHM (2018) Guidelines on experimental methods to assess mitochondrial dysfunction in cellular models of neurodegenerative diseases. '''Cell Death Differ''' 25:542-72. - [[Connolly 2018 Cell Death Differ |»Bioblast link«]]
:::: '''3.13''' Connolly NMC, Theurey P, Adam-Vizi V, Bazan NG, Bernardi P, Bolaños JP, Culmsee C, Dawson VL, Deshmukh M, Duchen MR, Düssmann H, Fiskum G, Galindo MF, Hardingham GE, Hardwick JM, Jekabsons MB, Jonas EA, Jordán J, Lipton SA, Manfredi G, Mattson MP, McLaughlin B, Methner A, Murphy AN, Murphy MP, Nicholls DG, Polster BM, Pozzan T, Rizzuto R, Satrústegui J, Slack RS, Swanson RA, Swerdlow RH, Will Y, Ying Z, Joselin A, Gioran A, Moreira Pinho C, Watters O, Salvucci M, Llorente-Folch I, Park DS, Bano D, Ankarcrona M, Pizzo P, Prehn JHM (2018) Guidelines on experimental methods to assess mitochondrial dysfunction in cellular models of neurodegenerative diseases. '''Cell Death Differ''' 25:542-72. - [[Connolly 2018 Cell Death Differ |»Bioblast link«]]
:S3
 


:::::: [[File:Cortez-Pinto 2009 J Hepatol CORRECTION.png|400px|link=Cortez-Pinto 2009 J Hepatol]]
:::::: [[File:Cortez-Pinto 2009 J Hepatol CORRECTION.png|400px|link=Cortez-Pinto 2009 J Hepatol]]
:::: '''3.14''' Cortez-Pinto H, Machado MV (2009) Uncoupling proteins and non-alcoholic fatty liver disease. '''J Hepatol''' 50:857-60. - [[Cortez-Pinto 2009 J Hepatol |»Bioblast link«]]
:::: '''3.14''' Cortez-Pinto H, Machado MV (2009) Uncoupling proteins and non-alcoholic fatty liver disease. '''J Hepatol''' 50:857-60. - [[Cortez-Pinto 2009 J Hepatol |»Bioblast link«]]
:S3
 


:::::: [[File:Dawson 2021 Open Library CORRECTION.png|400px|link=Dawson 2021 Open Library]]
:::::: [[File:Dawson 2021 Open Library CORRECTION.png|400px|link=Dawson 2021 Open Library]]
:::: '''3.15''' Dawson J (2021) Oxidative Phosphorylation: The Electron Transport Chain. Chapter 23. '''Open Library'''. - [[Dawson 2021 Open Library |»Bioblast link«]]
:::: '''3.15''' Dawson J (2021) Oxidative Phosphorylation: The Electron Transport Chain. Chapter 23. '''Open Library'''. - [[Dawson 2021 Open Library |»Bioblast link«]]
:S3
 


:::::: [[File:DiMauro 2003 N Engl J Med CORRECTION.png|400px|link=DiMauro 2003 N Engl J Med]]
:::::: [[File:DiMauro 2003 N Engl J Med CORRECTION.png|400px|link=DiMauro 2003 N Engl J Med]]
:::: '''3.16''' DiMauro S, Schon EA (2003) Mitochondrial respiratory-chain diseases. '''N Engl J Med''' 348:2656-68. - [[DiMauro 2003 N Engl J Med |»Bioblast link«]]
:::: '''3.16''' DiMauro S, Schon EA (2003) Mitochondrial respiratory-chain diseases. '''N Engl J Med''' 348:2656-68. - [[DiMauro 2003 N Engl J Med |»Bioblast link«]]
:S3
 


:::::: [[File:Fogg 2011 Chin J Cancer CORRECTION.png|400px|link=Fogg 2011 Chin J Cancer]]
:::::: [[File:Fogg 2011 Chin J Cancer CORRECTION.png|400px|link=Fogg 2011 Chin J Cancer]]
:::: '''3.17''' Fogg VC, Lanning NJ, Mackeigan JP (2011) Mitochondria in cancer: at the crossroads of life and death. '''Chin J Cancer''' 30:526-39. - [[Fogg 2011 Chin J Cancer |»Bioblast link«]]
:::: '''3.17''' Fogg VC, Lanning NJ, Mackeigan JP (2011) Mitochondria in cancer: at the crossroads of life and death. '''Chin J Cancer''' 30:526-39. - [[Fogg 2011 Chin J Cancer |»Bioblast link«]]
:S3
 


:::::: [[File:Forbes 2018 Nat Rev Nephrol CORRECTION.png|400px|link=Forbes 2018 Nat Rev Nephrol]]
:::::: [[File:Forbes 2018 Nat Rev Nephrol CORRECTION.png|400px|link=Forbes 2018 Nat Rev Nephrol]]
:::: '''3.18''' Forbes JM, Thorburn DR (2018) Mitochondrial dysfunction in diabetic kidney disease. '''Nat Rev Nephrol''' 14:291-312. - [[Forbes 2018 Nat Rev Nephrol |»Bioblast link«]]
:::: '''3.18''' Forbes JM, Thorburn DR (2018) Mitochondrial dysfunction in diabetic kidney disease. '''Nat Rev Nephrol''' 14:291-312. - [[Forbes 2018 Nat Rev Nephrol |»Bioblast link«]]
:S3
 


:::::: [[File:Frangos 2023 J Biol Chem CORRECTION.png|400px|link=Frangos 2023 J Biol Chem]]
:::::: [[File:Frangos 2023 J Biol Chem CORRECTION.png|400px|link=Frangos 2023 J Biol Chem]]
:::: '''3.19''' Frangos SM, DesOrmeaux GJ, Holloway GP (2023) Acidosis attenuates CPT-I supported bioenergetics as a potential mechanism limiting lipid oxidation. '''J Biol Chem''' 299:105079. - [[Frangos 2023 J Biol Chem |»Bioblast link«]]
:::: '''3.19''' Frangos SM, DesOrmeaux GJ, Holloway GP (2023) Acidosis attenuates CPT-I supported bioenergetics as a potential mechanism limiting lipid oxidation. '''J Biol Chem''' 299:105079. - [[Frangos 2023 J Biol Chem |»Bioblast link«]]
:S3
 


:::::: [[File:Gao 2022 EBioMedicine CORRECTION.png|400px|link=Gao 2022 EBioMedicine]]
:::::: [[File:Gao 2022 EBioMedicine CORRECTION.png|400px|link=Gao 2022 EBioMedicine]]
:::: '''3.20''' Gao YM, Feng ST, Wen Y, Tang TT, Wang B, Liu BC (2022) Cardiorenal protection of SGLT2 inhibitors-Perspectives from metabolic reprogramming. '''EBioMedicine''' 83:104215. - [[Gao 2022 EBioMedicine |»Bioblast link«]]
:::: '''3.20''' Gao YM, Feng ST, Wen Y, Tang TT, Wang B, Liu BC (2022) Cardiorenal protection of SGLT2 inhibitors-Perspectives from metabolic reprogramming. '''EBioMedicine''' 83:104215. - [[Gao 2022 EBioMedicine |»Bioblast link«]]
:S3
 


:::::: [[File:Gatti 2020 Front Pharmacol CORRECTION.png|400px|link=Gatti 2020 Front Pharmacol]]
:::::: [[File:Gatti 2020 Front Pharmacol CORRECTION.png|400px|link=Gatti 2020 Front Pharmacol]]
:::: '''3.21''' Gatti P, Ilamathi HS, Todkar K, Germain M (2020) Mitochondria targeted viral replication and survival strategies-prospective on SARS-CoV-2. '''Front Pharmacol''' 11:578599. - [[Gatti 2020 Front Pharmacol |»Bioblast link«]]
:::: '''3.21''' Gatti P, Ilamathi HS, Todkar K, Germain M (2020) Mitochondria targeted viral replication and survival strategies-prospective on SARS-CoV-2. '''Front Pharmacol''' 11:578599. - [[Gatti 2020 Front Pharmacol |»Bioblast link«]]
:S3
 


:::::: [[File:Granger 2015 Redox Biol CORRECTION.png|400px|link=Granger 2015 Redox Biol]]
:::::: [[File:Granger 2015 Redox Biol CORRECTION.png|400px|link=Granger 2015 Redox Biol]]
:::: '''3.22''' Granger DN, Kvietys PR (2015) Reperfusion injury and reactive oxygen species: The evolution of a concept. '''Redox Biol''' 6:524-551. - [[Granger 2015 Redox Biol |»Bioblast link«]]
:::: '''3.22''' Granger DN, Kvietys PR (2015) Reperfusion injury and reactive oxygen species: The evolution of a concept. '''Redox Biol''' 6:524-551. - [[Granger 2015 Redox Biol |»Bioblast link«]]
:S3
 


:::::: [[File:Himms-Hagen, Harper 2001 CORRECTION.png|250px|link=Himms-Hagen 2001 Exp Biol Med (Maywood)]]
:::::: [[File:Himms-Hagen, Harper 2001 CORRECTION.png|250px|link=Himms-Hagen 2001 Exp Biol Med (Maywood)]]
:::: '''3.23''' Himms-Hagen J, Harper ME (2001) Physiological role of UCP3 may be export of fatty acids from mitochondria when fatty acid oxidation predominates: an hypothesis. '''Exp Biol Med (Maywood)''' 226:78-84. - [[Himms-Hagen 2001 Exp Biol Med (Maywood) |»Bioblast link«]]
:::: '''3.23''' Himms-Hagen J, Harper ME (2001) Physiological role of UCP3 may be export of fatty acids from mitochondria when fatty acid oxidation predominates: an hypothesis. '''Exp Biol Med (Maywood)''' 226:78-84. - [[Himms-Hagen 2001 Exp Biol Med (Maywood) |»Bioblast link«]]
:S3
 


:::::: [[File:Ishii 2012 Front Oncol CORRECTION.png|400px|link=Ishii 2012 Front Oncol]]
:::::: [[File:Ishii 2012 Front Oncol CORRECTION.png|400px|link=Ishii 2012 Front Oncol]]
:::: '''3.24''' Ishii I, Harada Y, Kasahara T (2012) Reprofiling a classical anthelmintic, pyrvinium pamoate, as an anti-cancer drug targeting mitochondrial respiration. '''Front Oncol''' 2:137. - [[Ishii 2012 Front Oncol |»Bioblast link«]]
:::: '''3.24''' Ishii I, Harada Y, Kasahara T (2012) Reprofiling a classical anthelmintic, pyrvinium pamoate, as an anti-cancer drug targeting mitochondrial respiration. '''Front Oncol''' 2:137. - [[Ishii 2012 Front Oncol |»Bioblast link«]]
:S3
 


:::::: [[File:Jia 2018 Cells CORRECTION.png|400px|link=Jia 2018 Cells]]
:::::: [[File:Jia 2018 Cells CORRECTION.png|400px|link=Jia 2018 Cells]]
:::: '''3.25''' Jia D, Park JH, Jung KH, Levine H, Kaipparettu BA (2018) Elucidating the metabolic plasticity of cancer: mitochondrial reprogramming and hybrid metabolic states. '''Cells''' 7:21. - [[Jia 2018 Cells |»Bioblast link«]]
:::: '''3.25''' Jia D, Park JH, Jung KH, Levine H, Kaipparettu BA (2018) Elucidating the metabolic plasticity of cancer: mitochondrial reprogramming and hybrid metabolic states. '''Cells''' 7:21. - [[Jia 2018 Cells |»Bioblast link«]]
:S3
 


:::::: [[File:Jochmanova 2016 Clin Cancer Res CORRECTION.png|400px|link=Jochmanova 2016 Clin Cancer Res]]
:::::: [[File:Jochmanova 2016 Clin Cancer Res CORRECTION.png|400px|link=Jochmanova 2016 Clin Cancer Res]]
:::: '''3.26''' Jochmanova I, Pacak K (2016) Pheochromocytoma: the first metabolic endocrine cancer. '''Clin Cancer Res''' 22:5001-11. - [[Jochmanova 2016 Clin Cancer Res |»Bioblast link«]]
:::: '''3.26''' Jochmanova I, Pacak K (2016) Pheochromocytoma: the first metabolic endocrine cancer. '''Clin Cancer Res''' 22:5001-11. - [[Jochmanova 2016 Clin Cancer Res |»Bioblast link«]]
:S3
 


:::::: [[File:Klimova 2008 Cell Death Differ CORRECTION.png|400px|link=Klimova 2008 Cell Death Differ]]
:::::: [[File:Klimova 2008 Cell Death Differ CORRECTION.png|400px|link=Klimova 2008 Cell Death Differ]]
:::: '''3.27''' Klimova T, Chandel NS (2008) Mitochondrial Complex III regulates hypoxic activation of HIF. '''Cell Death Differ''' 15:660-6. - [[Klimova 2008 Cell Death Differ |»Bioblast link«]]
:::: '''3.27''' Klimova T, Chandel NS (2008) Mitochondrial Complex III regulates hypoxic activation of HIF. '''Cell Death Differ''' 15:660-6. - [[Klimova 2008 Cell Death Differ |»Bioblast link«]]
:S3
 


:::::: [[File:Lewis 2019 CORRECTION.png|400px|link=Lewis 2019 Int J Mol Sci]]
:::::: [[File:Lewis 2019 CORRECTION.png|400px|link=Lewis 2019 Int J Mol Sci]]
:::: '''3.28''' Lewis MT, Kasper JD, Bazil JN, Frisbee JC, Wiseman RW (2019) Quantification of mitochondrial oxidative phosphorylation in metabolic disease: application to Type 2 diabetes. '''Int J Mol Sci''' 20:5271. - [[Lewis 2019 Int J Mol Sci |»Bioblast link«]]
:::: '''3.28''' Lewis MT, Kasper JD, Bazil JN, Frisbee JC, Wiseman RW (2019) Quantification of mitochondrial oxidative phosphorylation in metabolic disease: application to Type 2 diabetes. '''Int J Mol Sci''' 20:5271. - [[Lewis 2019 Int J Mol Sci |»Bioblast link«]]
:S3
 


:::::: [[File:Liu 2009 J Biomed Sci CORRECTION.png|400px|link=Liu 2009 J Biomed Sci]]
:::::: [[File:Liu 2009 J Biomed Sci CORRECTION.png|400px|link=Liu 2009 J Biomed Sci]]
:::: '''3.29''' Liu Y, Schubert DR (2009) The specificity of neuroprotection by antioxidants. '''J Biomed Sci''' 16:98. - [[Liu 2009 J Biomed Sci |»Bioblast link«]]
:::: '''3.29''' Liu Y, Schubert DR (2009) The specificity of neuroprotection by antioxidants. '''J Biomed Sci''' 16:98. - [[Liu 2009 J Biomed Sci |»Bioblast link«]]
:S3
 


:::::: [[File:Ma 2018 Cancer Lett CORRECTION.png|400px|link=Ma 2018 Cancer Lett]]
:::::: [[File:Ma 2018 Cancer Lett CORRECTION.png|400px|link=Ma 2018 Cancer Lett]]
:::: '''3.30''' Ma Y, Temkin SM, Hawkridge AM, Guo C, Wang W, Wang XY, Fang X (2018) Fatty acid oxidation: an emerging facet of metabolic transformation in cancer. '''Cancer Lett''' 435:92-100. - [[Ma 2018 Cancer Lett |»Bioblast link«]]
:::: '''3.30''' Ma Y, Temkin SM, Hawkridge AM, Guo C, Wang W, Wang XY, Fang X (2018) Fatty acid oxidation: an emerging facet of metabolic transformation in cancer. '''Cancer Lett''' 435:92-100. - [[Ma 2018 Cancer Lett |»Bioblast link«]]
:S3
 


:::::: [[File:Ma 2020 Sci Rep CORRECTION.png|400px|link=Ma 2020 Sci Rep]]
:::::: [[File:Ma 2020 Sci Rep CORRECTION.png|400px|link=Ma 2020 Sci Rep]]
:::: '''3.31''' Ma Y, Wang W, Devarakonda T, Zhou H, Wang XY, Salloum FN, Spiegel S, Fang X (2020) Functional analysis of molecular and pharmacological modulators of mitochondrial fatty acid oxidation. '''Sci Rep''' 10:1450. - [[Ma 2020 Sci Rep |»Bioblast link«]]
:::: '''3.31''' Ma Y, Wang W, Devarakonda T, Zhou H, Wang XY, Salloum FN, Spiegel S, Fang X (2020) Functional analysis of molecular and pharmacological modulators of mitochondrial fatty acid oxidation. '''Sci Rep''' 10:1450. - [[Ma 2020 Sci Rep |»Bioblast link«]]
:S3
 


:::::: [[File:Merlin 2021 Nat Metab CORRECTION.png|400px|link=Merlin 2021 Nat Metab]]
:::::: [[File:Merlin 2021 Nat Metab CORRECTION.png|400px|link=Merlin 2021 Nat Metab]]
:::: '''3.32''' Merlin J, Ivanov S, Dumont A, Sergushichev A, Gall J, Stunault M, Ayrault M, Vaillant N, Castiglione A, Swain A, Orange F, Gallerand A, Berton T, Martin JC, Carobbio S, Masson J, Gaisler-Salomon I, Maechler P, Rayport S, Sluimer JC, Biessen EAL, Guinamard RR, Gautier EL, Thorp EB, Artyomov MN, Yvan-Charvet L (2021) Non-canonical glutamine transamination sustains efferocytosis by coupling redox buffering to oxidative phosphorylation. '''Nat Metab''' 3:1313-26. - [[Merlin 2021 Nat Metab |»Bioblast link«]]
:::: '''3.32''' Merlin J, Ivanov S, Dumont A, Sergushichev A, Gall J, Stunault M, Ayrault M, Vaillant N, Castiglione A, Swain A, Orange F, Gallerand A, Berton T, Martin JC, Carobbio S, Masson J, Gaisler-Salomon I, Maechler P, Rayport S, Sluimer JC, Biessen EAL, Guinamard RR, Gautier EL, Thorp EB, Artyomov MN, Yvan-Charvet L (2021) Non-canonical glutamine transamination sustains efferocytosis by coupling redox buffering to oxidative phosphorylation. '''Nat Metab''' 3:1313-26. - [[Merlin 2021 Nat Metab |»Bioblast link«]]
:S3
 


:::::: [[File:Merritt 2020 Rev Endocr Metab Disord CORRECTION.png|400px|link=Merritt 2020 Rev Endocr Metab Disord]]
:::::: [[File:Merritt 2020 Rev Endocr Metab Disord CORRECTION.png|400px|link=Merritt 2020 Rev Endocr Metab Disord]]
:::: '''3.33''' Merritt JL 2nd, MacLeod E, Jurecka A, Hainline B (2020) Clinical manifestations and management of fatty acid oxidation disorders. '''Rev Endocr Metab Disord''' 21:479-93. - [[Merritt 2020 Rev Endocr Metab Disord |»Bioblast link«]]
:::: '''3.33''' Merritt JL 2nd, MacLeod E, Jurecka A, Hainline B (2020) Clinical manifestations and management of fatty acid oxidation disorders. '''Rev Endocr Metab Disord''' 21:479-93. - [[Merritt 2020 Rev Endocr Metab Disord |»Bioblast link«]]
:S3
 


:::::: [[File:Mueller 2023 Int J Mol Sci CORRECTION.png|400px|link=Mueller 2023 Int J Mol Sci]]
:::::: [[File:Mueller 2023 Int J Mol Sci CORRECTION.png|400px|link=Mueller 2023 Int J Mol Sci]]
:::: '''3.34''' Müller M, Donhauser E, Maske T, Bischof C, Dumitrescu D, Rudolph V, Klinke A (2023) Mitochondrial integrity is critical in right heart failure development. '''Int J Mol Sci''' 24:11108. - [[Mueller 2023 Int J Mol Sci |»Bioblast link«]]
:::: '''3.34''' Müller M, Donhauser E, Maske T, Bischof C, Dumitrescu D, Rudolph V, Klinke A (2023) Mitochondrial integrity is critical in right heart failure development. '''Int J Mol Sci''' 24:11108. - [[Mueller 2023 Int J Mol Sci |»Bioblast link«]]
:S3
 


:::::: [[File:Murray 2009 Genome Med CORRECTION.png|400px|link=Murray 2009 Genome Med]]
:::::: [[File:Murray 2009 Genome Med CORRECTION.png|400px|link=Murray 2009 Genome Med]]
:::: '''3.35''' Murray AJ (2009) Metabolic adaptation of skeletal muscle to high altitude hypoxia: how new technologies could resolve the controversies. '''Genome Med''' 1:117. - [[Murray 2009 Genome Med |»Bioblast link«]]
:::: '''3.35''' Murray AJ (2009) Metabolic adaptation of skeletal muscle to high altitude hypoxia: how new technologies could resolve the controversies. '''Genome Med''' 1:117. - [[Murray 2009 Genome Med |»Bioblast link«]]
:S3
 


:::::: [[File:Nussbaum 2005 J Clin Invest CORRECTION.png|400px|link=Nussbaum 2005 J Clin Invest]]
:::::: [[File:Nussbaum 2005 J Clin Invest CORRECTION.png|400px|link=Nussbaum 2005 J Clin Invest]]
:::: '''3.36''' Nussbaum RL (2005) Mining yeast in silico unearths a golden nugget for mitochondrial biology. '''J Clin Invest''' 115:2689-91. - [[Nussbaum 2005 J Clin Invest |»Bioblast link«]]
:::: '''3.36''' Nussbaum RL (2005) Mining yeast in silico unearths a golden nugget for mitochondrial biology. '''J Clin Invest''' 115:2689-91. - [[Nussbaum 2005 J Clin Invest |»Bioblast link«]]
:S3
 


:::::: [[File:Pacifico 2023 Int J Mol Sci CORRECTION.png|400px|link=Pacifico 2023 Int J Mol Sci]]
:::::: [[File:Pacifico 2023 Int J Mol Sci CORRECTION.png|400px|link=Pacifico 2023 Int J Mol Sci]]
:::: '''3.37''' Pacifico F, Leonardi A, Crescenzi E (2023) Glutamine metabolism in cancer stem cells: a complex liaison in the tumor microenvironment. Int J Mol Sci 24:2337. - [[Pacifico 2023 Int J Mol Sci |»Bioblast link«]]
:::: '''3.37''' Pacifico F, Leonardi A, Crescenzi E (2023) Glutamine metabolism in cancer stem cells: a complex liaison in the tumor microenvironment. Int J Mol Sci 24:2337. - [[Pacifico 2023 Int J Mol Sci |»Bioblast link«]]
:S3
 


:::::: [[File:Pendleton 2023 Front Cell Dev Biol CORRECTION.png|400px|link=Pendleton 2023 Front Cell Dev Biol]]
:::::: [[File:Pendleton 2023 Front Cell Dev Biol CORRECTION.png|400px|link=Pendleton 2023 Front Cell Dev Biol]]
:::: '''3.38''' Pendleton KE, Wang K, Echeverria GV (2023) Rewiring of mitochondrial metabolism in therapy-resistant cancers: permanent and plastic adaptations. '''Front Cell Dev Biol''' 11:1254313. - [[Pendleton 2023 Front Cell Dev Biol |»Bioblast link«]]
:::: '''3.38''' Pendleton KE, Wang K, Echeverria GV (2023) Rewiring of mitochondrial metabolism in therapy-resistant cancers: permanent and plastic adaptations. '''Front Cell Dev Biol''' 11:1254313. - [[Pendleton 2023 Front Cell Dev Biol |»Bioblast link«]]
:S3
 


:::::: [[File:Pharaoh 2023 Geroscience CORRECTION.png|400px|link=Pharaoh 2023 Geroscience]]
:::::: [[File:Pharaoh 2023 Geroscience CORRECTION.png|400px|link=Pharaoh 2023 Geroscience]]
:::: '''3.39''' Pharaoh G, Kamat V, Kannan S, Stuppard RS, Whitson J, Martín-Pérez M, Qian WJ, MacCoss MJ, Villén J, Rabinovitch P, Campbell MD, Sweet IR, Marcinek DJ (2023) The mitochondrially targeted peptide elamipretide (SS-31) improves ADP sensitivity in aged mitochondria by increasing uptake through the adenine nucleotide translocator (ANT). '''Geroscience''' https://doi.org/10.1007/s11357-023-00861-y - [[Pharaoh 2023 Geroscience |»Bioblast link«]]
:::: '''3.39''' Pharaoh G, Kamat V, Kannan S, Stuppard RS, Whitson J, Martín-Pérez M, Qian WJ, MacCoss MJ, Villén J, Rabinovitch P, Campbell MD, Sweet IR, Marcinek DJ (2023) The mitochondrially targeted peptide elamipretide (SS-31) improves ADP sensitivity in aged mitochondria by increasing uptake through the adenine nucleotide translocator (ANT). '''Geroscience''' https://doi.org/10.1007/s11357-023-00861-y - [[Pharaoh 2023 Geroscience |»Bioblast link«]]
:S3
 


:::::: [[File:Picard 2012 Am J Respir Crit Care Med CORRECTION.png|250px|link=Picard 2012 Am J Respir Crit Care Med]]
:::::: [[File:Picard 2012 Am J Respir Crit Care Med CORRECTION.png|250px|link=Picard 2012 Am J Respir Crit Care Med]]
:::: '''3.40''' Picard M, Jung B, Liang F, Azuelos I, Hussain S, Goldberg P, Godin R, Danialou G, Chaturvedi R, Rygiel K, Matecki S, Jaber S, Des Rosiers C, Karpati G, Ferri L, Burelle Y, Turnbull DM, Taivassalo T, Petrof BJ (2012) Mitochondrial dysfunction and lipid accumulation in the human diaphragm during mechanical ventilation. '''Am J Respir Crit Care Med''' 186:1140-9. - [[Picard 2012 Am J Respir Crit Care Med |»Bioblast link«]]
:::: '''3.40''' Picard M, Jung B, Liang F, Azuelos I, Hussain S, Goldberg P, Godin R, Danialou G, Chaturvedi R, Rygiel K, Matecki S, Jaber S, Des Rosiers C, Karpati G, Ferri L, Burelle Y, Turnbull DM, Taivassalo T, Petrof BJ (2012) Mitochondrial dysfunction and lipid accumulation in the human diaphragm during mechanical ventilation. '''Am J Respir Crit Care Med''' 186:1140-9. - [[Picard 2012 Am J Respir Crit Care Med |»Bioblast link«]]
:S3
 


:::::: [[File:Polyzos 2017 Mech Ageing Dev CORRECTION.png|400px|link=Polyzos 2017 Mech Ageing Dev]]
:::::: [[File:Polyzos 2017 Mech Ageing Dev CORRECTION.png|400px|link=Polyzos 2017 Mech Ageing Dev]]
:::: '''3.41''' Polyzos AA, McMurray CT (2017) The chicken or the egg: mitochondrial dysfunction as a cause or consequence of toxicity in Huntington's disease. '''Mech Ageing Dev''' 161:181-97. - [[Polyzos 2017 Mech Ageing Dev |»Bioblast link«]]
:::: '''3.41''' Polyzos AA, McMurray CT (2017) The chicken or the egg: mitochondrial dysfunction as a cause or consequence of toxicity in Huntington's disease. '''Mech Ageing Dev''' 161:181-97. - [[Polyzos 2017 Mech Ageing Dev |»Bioblast link«]]
:S3
 


:::::: [[File:Prasun 2020 J Diabetes Metab Disord CORRECTION.png|400px|link=Prasun 2020 J Diabetes Metab Disord]]
:::::: [[File:Prasun 2020 J Diabetes Metab Disord CORRECTION.png|400px|link=Prasun 2020 J Diabetes Metab Disord]]
:::: '''3.42''' Prasun P (2020) Role of mitochondria in pathogenesis of type 2 diabetes mellitus. '''J Diabetes Metab Disord''' 19:2017-22. - [[Prasun 2020 J Diabetes Metab Disord |»Bioblast link«]]
:::: '''3.42''' Prasun P (2020) Role of mitochondria in pathogenesis of type 2 diabetes mellitus. '''J Diabetes Metab Disord''' 19:2017-22. - [[Prasun 2020 J Diabetes Metab Disord |»Bioblast link«]]
:S3
 


:::::: [[File:Radogna 2021 Methods Mol Biol CORRECTION.png|400px|link=Radogna 2021 Methods Mol Biol]]
:::::: [[File:Radogna 2021 Methods Mol Biol CORRECTION.png|400px|link=Radogna 2021 Methods Mol Biol]]
:::: '''3.43''' Radogna F, Gerard D, Dicato M, Diederich M (2021) Assessment of mitochondrial cell metabolism by respiratory chain electron flow assays. '''Methods Mol Biol''' 2276:129-141. - [[Radogna 2021 Methods Mol Biol |»Bioblast link«]]
:::: '''3.43''' Radogna F, Gerard D, Dicato M, Diederich M (2021) Assessment of mitochondrial cell metabolism by respiratory chain electron flow assays. '''Methods Mol Biol''' 2276:129-141. - [[Radogna 2021 Methods Mol Biol |»Bioblast link«]]
:S3
 


:::::: [[File:Raimondi 2020 Br J Cancer CORRECTION.png|400px|link=Raimondi 2020 Br J Cancer]]
:::::: [[File:Raimondi 2020 Br J Cancer CORRECTION.png|400px|link=Raimondi 2020 Br J Cancer]]
:::: '''3.44''' Raimondi V, Ciccarese F, Ciminale V (2020) Oncogenic pathways and the electron transport chain: a dangeROS liaison. '''Br J Cancer''' 122:168-81. - [[Raimondi 2020 Br J Cancer |»Bioblast link«]]
:::: '''3.44''' Raimondi V, Ciccarese F, Ciminale V (2020) Oncogenic pathways and the electron transport chain: a dangeROS liaison. '''Br J Cancer''' 122:168-81. - [[Raimondi 2020 Br J Cancer |»Bioblast link«]]
:S3
 


:::::: [[File:Rose 2019 Adis CORRECTION.png|400px|link=Rose 2019 Adis]]
:::::: [[File:Rose 2019 Adis CORRECTION.png|400px|link=Rose 2019 Adis]]
:::: '''3.45''' Rose S, Bennuri SC (2019) Mitochondrial metabolism. In: Frye R, Berk M (eds) The therapeutic use of N-acetylcysteine (NAC) in medicine. '''Adis, Singapore'''. - [[Rose 2019 Adis |»Bioblast link«]]
:::: '''3.45''' Rose S, Bennuri SC (2019) Mitochondrial metabolism. In: Frye R, Berk M (eds) The therapeutic use of N-acetylcysteine (NAC) in medicine. '''Adis, Singapore'''. - [[Rose 2019 Adis |»Bioblast link«]]
:S3
 


:::::: [[File:Sadri 2023 Function (Oxf) CORRECTION.png|400px|link=Sadri 2023 Function (Oxf)]]
:::::: [[File:Sadri 2023 Function (Oxf) CORRECTION.png|400px|link=Sadri 2023 Function (Oxf)]]
:::: '''3.46''' Sadri S, Zhang X, Audi SH, Cowley AW Jr, Dash RK (2023) Computational modeling of substrate-dependent mitochondrial respiration and bioenergetics in the heart and kidney cortex and outer medulla. '''Function (Oxf)''' 4:zqad038. - [[Sadri 2023 Function (Oxf) |»Bioblast link«]]
:::: '''3.46''' Sadri S, Zhang X, Audi SH, Cowley AW Jr, Dash RK (2023) Computational modeling of substrate-dependent mitochondrial respiration and bioenergetics in the heart and kidney cortex and outer medulla. '''Function (Oxf)''' 4:zqad038. - [[Sadri 2023 Function (Oxf) |»Bioblast link«]]
:S3
 


:::::: [[File:Shadel 2005 Trends Biochem Sci CORRECTION.png|400px|link=Shadel 2005 Trends Biochem Sci]]
:::::: [[File:Shadel 2005 Trends Biochem Sci CORRECTION.png|400px|link=Shadel 2005 Trends Biochem Sci]]
:::: '''3.47''' Shadel GS (2005) Mitochondrial DNA, aconitase 'wraps' it up. '''Trends Biochem Sci''' 30:294-6. - [[Shadel 2005 Trends Biochem Sci |»Bioblast link«]]
:::: '''3.47''' Shadel GS (2005) Mitochondrial DNA, aconitase 'wraps' it up. '''Trends Biochem Sci''' 30:294-6. - [[Shadel 2005 Trends Biochem Sci |»Bioblast link«]]
:S3
 


:::::: [[File:Sivitz 2017 Neuromethods CORRECTION.png|400px|link=Sivitz 2017 Neuromethods]]
:::::: [[File:Sivitz 2017 Neuromethods CORRECTION.png|400px|link=Sivitz 2017 Neuromethods]]
:::: '''3.48''' Sivitz WI (2017) Techniques to investigate bioenergetics of mitochondria. In: Strack S, Usachev Y (eds) Techniques to investigate mitochondrial function in neurons. '''Neuromethods''' 123:67-94. - [[Sivitz 2017 Neuromethods |»Bioblast link«]]
:::: '''3.48''' Sivitz WI (2017) Techniques to investigate bioenergetics of mitochondria. In: Strack S, Usachev Y (eds) Techniques to investigate mitochondrial function in neurons. '''Neuromethods''' 123:67-94. - [[Sivitz 2017 Neuromethods |»Bioblast link«]]
:S3
 


:::::: [[File:Snyder 2009 Antioxid Redox Signal.png|400px|link=Snyder 2009 Antioxid Redox Signal]]
:::::: [[File:Snyder 2009 Antioxid Redox Signal.png|400px|link=Snyder 2009 Antioxid Redox Signal]]
:::: '''3.49''' Snyder CM, Chandel NS (2009) Mitochondrial regulation of cell survival and death during low-oxygen conditions. '''Antioxid Redox Signal''' 11:2673-83. - [[Snyder 2009 Antioxid Redox Signal |»Bioblast link«]]
:::: '''3.49''' Snyder CM, Chandel NS (2009) Mitochondrial regulation of cell survival and death during low-oxygen conditions. '''Antioxid Redox Signal''' 11:2673-83. - [[Snyder 2009 Antioxid Redox Signal |»Bioblast link«]]
:S3
 


:::::: [[File:Speijer 2016 Biochem J CORRECTION.png|400px|link=Speijer 2016 Biochem J]]
:::::: [[File:Speijer 2016 Biochem J CORRECTION.png|400px|link=Speijer 2016 Biochem J]]
:::: '''3.50''' Speijer D (2016) Being right on Q: shaping eukaryotic evolution. '''Biochem J''' 473:4103-27. - [[Speijer 2016 Biochem J |»Bioblast link«]]
:::: '''3.50''' Speijer D (2016) Being right on Q: shaping eukaryotic evolution. '''Biochem J''' 473:4103-27. - [[Speijer 2016 Biochem J |»Bioblast link«]]
:S3
 


:::::: [[File:Vockley 2021 Cambridge Univ Press CORRECTION.png|400px|link=Vockley 2021 Cambridge Univ Press]]
:::::: [[File:Vockley 2021 Cambridge Univ Press CORRECTION.png|400px|link=Vockley 2021 Cambridge Univ Press]]
:::: '''3.51''' Vockley J (2021) Inborn errors of fatty acid oxidation. In: Suchy FS, Sokol RJ, Balistreri WF (eds) Liver disease in children. '''Cambridge Univ Press''':611-27. https://doi.org/10.1017/9781108918978.034 - [[Vockley 2021 Cambridge Univ Press |»Bioblast link«]]
:::: '''3.51''' Vockley J (2021) Inborn errors of fatty acid oxidation. In: Suchy FS, Sokol RJ, Balistreri WF (eds) Liver disease in children. '''Cambridge Univ Press''':611-27. - [[Vockley 2021 Cambridge Univ Press |»Bioblast link«]]
:S3
 


:::::: [[File:Vorotnikov 2022 Biomedicines CORRECTION.png|400px|link=Vorotnikov 2022 Biomedicines]]
:::::: [[File:Vorotnikov 2022 Biomedicines CORRECTION.png|400px|link=Vorotnikov 2022 Biomedicines]]
:::: '''3.52''' Vorotnikov AV, Khapchaev AY, Nickashin AV, Shirinsky VP (2022) In vitro modeling of diabetes impact on vascular endothelium: Are essentials engaged to tune metabolism? '''Biomedicines''' 10:3181. - [[Vorotnikov 2022 Biomedicines |»Bioblast link«]]
:::: '''3.52''' Vorotnikov AV, Khapchaev AY, Nickashin AV, Shirinsky VP (2022) In vitro modeling of diabetes impact on vascular endothelium: Are essentials engaged to tune metabolism? '''Biomedicines''' 10:3181. - [[Vorotnikov 2022 Biomedicines |»Bioblast link«]]
:S3
 


:::::: [[File:Yang 2021 Springer CORRECTION.png|400px|link=Yang 2021 Springer]]
:::::: [[File:Yang 2021 Springer CORRECTION.png|400px|link=Yang 2021 Springer]]
:::: '''3.53''' Yang Y, Wu Y, Sun XD, Zhang Y (2021) Reactive oxygen species, glucose metabolism, and lipid metabolism. Springer In: Huang C, Zhang Y (eds) Oxidative stress. '''Springer''', Singapore. - [[Yang 2021 Springer |»Bioblast link«]]
:::: '''3.53''' Yang Y, Wu Y, Sun XD, Zhang Y (2021) Reactive oxygen species, glucose metabolism, and lipid metabolism. Springer In: Huang C, Zhang Y (eds) Oxidative stress. '''Springer''', Singapore. - [[Yang 2021 Springer |»Bioblast link«]]
:S3
 


:::::: [[File:Zhang 2021 Cells CORRECTION.png|400px|link=Zhang 2021 Cells]]
:::::: [[File:Zhang 2021 Cells CORRECTION.png|400px|link=Zhang 2021 Cells]]
:::: '''3.54''' Zhang X, Tomar N, Kandel SM, Audi SH, Cowley AW Jr, Dash RK (2021) Substrate- and calcium-dependent differential regulation of mitochondrial oxidative phosphorylation and energy production in the heart and kidney. '''Cells''' 11:131. - [[Zhang 2021 Cells |»Bioblast link«]]
:::: '''3.54''' Zhang X, Tomar N, Kandel SM, Audi SH, Cowley AW Jr, Dash RK (2021) Substrate- and calcium-dependent differential regulation of mitochondrial oxidative phosphorylation and energy production in the heart and kidney. '''Cells''' 11:131. - [[Zhang 2021 Cells |»Bioblast link«]]
:S3
 


:::::: [[File:Zhao 2021 Mol Biomed CORRECTION.png|400px|link=Zhao 2021 Mol Biomed]]
:::::: [[File:Zhao 2021 Mol Biomed CORRECTION.png|400px|link=Zhao 2021 Mol Biomed]]
:::: '''3.55''' Zhao H, Li Y (2021) Cancer metabolism and intervention therapy. '''Mol Biomed''' 2:5. - [[Zhao 2021 Mol Biomed |»Bioblast link«]]
:::: '''3.55''' Zhao H, Li Y (2021) Cancer metabolism and intervention therapy. '''Mol Biomed''' 2:5. - [[Zhao 2021 Mol Biomed |»Bioblast link«]]
:S3
 


=== FADH<sub>2</sub> ⟶ FAD + H<sup>+</sup> ===
=== FADH<sub>2</sub> ⟶ FAD + H<sup>+</sup> ===
Line 869: Line 871:
:::::: [[File:Cowan 2019 CNS Neurosci Ther CORRECTION.png|400px|link=Cowan 2019 CNS Neurosci Ther]]
:::::: [[File:Cowan 2019 CNS Neurosci Ther CORRECTION.png|400px|link=Cowan 2019 CNS Neurosci Ther]]
:::: '''4a.1''' Cowan K, Anichtchik O, Luo S (2019) Mitochondrial integrity in neurodegeneration. '''CNS Neurosci Ther''' 25:825-36. - [[Cowan 2019 CNS Neurosci Ther |»Bioblast link«]]
:::: '''4a.1''' Cowan K, Anichtchik O, Luo S (2019) Mitochondrial integrity in neurodegeneration. '''CNS Neurosci Ther''' 25:825-36. - [[Cowan 2019 CNS Neurosci Ther |»Bioblast link«]]
:S4
 




Line 876: Line 878:
:::::: [[File:Ahmad 2022 StatPearls CORRECTION.png|400px|link=Ahmad 2022 StatPearls Publishing]]
:::::: [[File:Ahmad 2022 StatPearls CORRECTION.png|400px|link=Ahmad 2022 StatPearls Publishing]]
:::: '''4b.1''' Ahmad M, Wolberg A, Kahwaji CI (2022) Biochemistry, electron transport chain. '''StatPearls Publishing''' StatPearls [Internet]. Treasure Island (FL) - [[Ahmad 2022 StatPearls Publishing |»Bioblast link«]]
:::: '''4b.1''' Ahmad M, Wolberg A, Kahwaji CI (2022) Biochemistry, electron transport chain. '''StatPearls Publishing''' StatPearls [Internet]. Treasure Island (FL) - [[Ahmad 2022 StatPearls Publishing |»Bioblast link«]]
:S4
 


:::::: [[File:Alston 2017 J Pathol CORRECTION.png|400px|link=Alston 2017 J Pathol]]
:::::: [[File:Alston 2017 J Pathol CORRECTION.png|400px|link=Alston 2017 J Pathol]]
:::: '''4b.2''' Alston CL, Rocha MC, Lax NZ, Turnbull DM, Taylor RW (2017) The genetics and pathology of mitochondrial disease. '''J Pathol''' 241:236-50. - [[Alston 2017 J Pathol |»Bioblast link«]]
:::: '''4b.2''' Alston CL, Rocha MC, Lax NZ, Turnbull DM, Taylor RW (2017) The genetics and pathology of mitochondrial disease. '''J Pathol''' 241:236-50. - [[Alston 2017 J Pathol |»Bioblast link«]]
:S4
 


:::::: [[File:Anoar 2021 Front Neurosci CORRECTION.jpg|400px|link=Anoar 2021 Front Neurosci]]
:::::: [[File:Anoar 2021 Front Neurosci CORRECTION.jpg|400px|link=Anoar 2021 Front Neurosci]]
:::: '''4b.3''' Anoar S, Woodling NS, Niccoli T (2021) Mitochondria dysfunction in frontotemporal dementia/amyotrophic lateral sclerosis: lessons from ''Drosophila'' models. '''Front Neurosci''' 15:786076. - [[Anoar 2021 Front Neurosci |»Bioblast link«]]
:::: '''4b.3''' Anoar S, Woodling NS, Niccoli T (2021) Mitochondria dysfunction in frontotemporal dementia/amyotrophic lateral sclerosis: lessons from ''Drosophila'' models. '''Front Neurosci''' 15:786076. - [[Anoar 2021 Front Neurosci |»Bioblast link«]]
:S4
 


:::::: [[File:Chen 2022 Int J Mol Sci CORRECTION.png|400px|link=Chen 2022 Int J Mol Sci]]
:::::: [[File:Chen 2022 Int J Mol Sci CORRECTION.png|400px|link=Chen 2022 Int J Mol Sci]]
:::: '''4b.4''' Chen TH, Koh KY, Lin KM, Chou CK (2022) Mitochondrial dysfunction as an underlying cause of skeletal muscle disorders. '''Int J Mol Sci''' 23:12926. - [[Chen 2022 Int J Mol Sci |»Bioblast link«]]
:::: '''4b.4''' Chen TH, Koh KY, Lin KM, Chou CK (2022) Mitochondrial dysfunction as an underlying cause of skeletal muscle disorders. '''Int J Mol Sci''' 23:12926. - [[Chen 2022 Int J Mol Sci |»Bioblast link«]]
:S4
 


:::::: [[File:Cojocaru 2023 Antioxidants (Basel) CORRECTION.png|400px|link=Cojocaru 2023 Antioxidants (Basel)]]
:::::: [[File:Cojocaru 2023 Antioxidants (Basel) CORRECTION.png|400px|link=Cojocaru 2023 Antioxidants (Basel)]]
:::: '''4b.5''' Cojocaru KA, Luchian I, Goriuc A, Antoci LM, Ciobanu CG, Popescu R, Vlad CE, Blaj M, Foia LG (2023) Mitochondrial dysfunction, oxidative stress, and therapeutic strategies in diabetes, obesity, and cardiovascular disease. '''Antioxidants (Basel)''' 12:658. - [[Cojocaru 2023 Antioxidants (Basel) |»Bioblast link«]]
:::: '''4b.5''' Cojocaru KA, Luchian I, Goriuc A, Antoci LM, Ciobanu CG, Popescu R, Vlad CE, Blaj M, Foia LG (2023) Mitochondrial dysfunction, oxidative stress, and therapeutic strategies in diabetes, obesity, and cardiovascular disease. '''Antioxidants (Basel)''' 12:658. - [[Cojocaru 2023 Antioxidants (Basel) |»Bioblast link«]]
:S4
 


:::::: [[File:Dilliraj 2022 Nutrients CORRECTION.png|400px|link=Dilliraj 2022 Nutrients]]
:::::: [[File:Dilliraj 2022 Nutrients CORRECTION.png|400px|link=Dilliraj 2022 Nutrients]]
:::: '''4b.6''' Dilliraj LN, Schiuma G, Lara D, Strazzabosco G, Clement J, Giovannini P, Trapella C, Narducci M, Rizzo R (2022) The evolution of ketosis: potential impact on clinical conditions. '''Nutrients''' 14:3613. - [[Dilliraj 2022 Nutrients |»Bioblast link«]]
:::: '''4b.6''' Dilliraj LN, Schiuma G, Lara D, Strazzabosco G, Clement J, Giovannini P, Trapella C, Narducci M, Rizzo R (2022) The evolution of ketosis: potential impact on clinical conditions. '''Nutrients''' 14:3613. - [[Dilliraj 2022 Nutrients |»Bioblast link«]]
:S4
 


:::::: [[File:Distelmaier 2009 Brain CORRECTION.png|400px|link=Distelmaier 2009 Brain]]
:::::: [[File:Distelmaier 2009 Brain CORRECTION.png|400px|link=Distelmaier 2009 Brain]]
:::: '''4b.7''' Distelmaier F, Koopman WJ, van den Heuvel LP, Rodenburg RJ, Mayatepek E, Willems PH, Smeitink JA (2009) Mitochondrial complex I deficiency: from organelle dysfunction to clinical disease. '''Brain''' 132:833-42. - [[Distelmaier 2009 Brain |»Bioblast link«]]
:::: '''4b.7''' Distelmaier F, Koopman WJ, van den Heuvel LP, Rodenburg RJ, Mayatepek E, Willems PH, Smeitink JA (2009) Mitochondrial complex I deficiency: from organelle dysfunction to clinical disease. '''Brain''' 132:833-42. - [[Distelmaier 2009 Brain |»Bioblast link«]]
:S4
 


:::::: [[File:Egan 2023 Physiol Rev CORRECTION.png|400px|link=Egan 2023 Physiol Rev]]
:::::: [[File:Egan 2023 Physiol Rev CORRECTION.png|400px|link=Egan 2023 Physiol Rev]]
:::: '''4b.8''' Egan B, Sharples AP (2023) Molecular responses to acute exercise and their relevance for adaptations in skeletal muscle to exercise training. '''Physiol Rev''' 103:2057-2170. - [[Egan 2023 Physiol Rev |»Bioblast link«]]
:::: '''4b.8''' Egan B, Sharples AP (2023) Molecular responses to acute exercise and their relevance for adaptations in skeletal muscle to exercise training. '''Physiol Rev''' 103:2057-2170. - [[Egan 2023 Physiol Rev |»Bioblast link«]]
:S4
 


:::::: [[File:El-Gammal 2022 Pflugers Arch CORRECTION.png|400px|link=El-Gammal 2022 Pflugers Arch]]
:::::: [[File:El-Gammal 2022 Pflugers Arch CORRECTION.png|400px|link=El-Gammal 2022 Pflugers Arch]]
:::: '''4b.9''' El-Gammal Z, Nasr MA, Elmehrath AO, Salah RA, Saad SM, El-Badri N (2022) Regulation of mitochondrial temperature in health and disease. '''Pflugers Arch''' 474:1043-51. - [[El-Gammal 2022 Pflugers Arch |»Bioblast link«]]
:::: '''4b.9''' El-Gammal Z, Nasr MA, Elmehrath AO, Salah RA, Saad SM, El-Badri N (2022) Regulation of mitochondrial temperature in health and disease. '''Pflugers Arch''' 474:1043-51. - [[El-Gammal 2022 Pflugers Arch |»Bioblast link«]]
:S4
 


:::::: [[File:Fahimi 2022 Trends in Chemistry CORRECTION.png|400px|link=Fahimi 2022 Trends in Chemistry]]
:::::: [[File:Fahimi 2022 Trends in Chemistry CORRECTION.png|400px|link=Fahimi 2022 Trends in Chemistry]]
:::: '''4b.10''' Fahimi P, Matta CF (2022) The hot mitochondrion paradox: reconciling theory and experiment. '''Trends in Chemistry''' 4:4-20. - [[Fahimi 2022 Trends in Chemistry |»Bioblast link«]]
:::: '''4b.10''' Fahimi P, Matta CF (2022) The hot mitochondrion paradox: reconciling theory and experiment. '''Trends in Chemistry''' 4:4-20. - [[Fahimi 2022 Trends in Chemistry |»Bioblast link«]]
:S4
 


:::::: [[File:Faria 2023 Pharmaceutics CORRECTION.png|400px|link=Faria 2023 Pharmaceutics]]
:::::: [[File:Faria 2023 Pharmaceutics CORRECTION.png|400px|link=Faria 2023 Pharmaceutics]]
:::: '''4b.11''' Faria R, Boisguérin P, Sousa Â, Costa D (2023) Delivery systems for mitochondrial gene therapy: a review. '''Pharmaceutics''' 15:572. - [[Faria 2023 Pharmaceutics |»Bioblast link«]]
:::: '''4b.11''' Faria R, Boisguérin P, Sousa Â, Costa D (2023) Delivery systems for mitochondrial gene therapy: a review. '''Pharmaceutics''' 15:572. - [[Faria 2023 Pharmaceutics |»Bioblast link«]]
:S4
 


:::::: [[File:Foo 2022 Trends Microbiol CORRECTION.png|400px|link=Foo 2022 Trends Microbiol]]
:::::: [[File:Foo 2022 Trends Microbiol CORRECTION.png|400px|link=Foo 2022 Trends Microbiol]]
:::: '''4b.12''' Foo J, Bellot G, Pervaiz S, Alonso S (2022) Mitochondria-mediated oxidative stress during viral infection. '''Trends Microbiol''' 30:679-92. - [[Foo 2022 Trends Microbiol |»Bioblast link«]]
:::: '''4b.12''' Foo J, Bellot G, Pervaiz S, Alonso S (2022) Mitochondria-mediated oxidative stress during viral infection. '''Trends Microbiol''' 30:679-92. - [[Foo 2022 Trends Microbiol |»Bioblast link«]]
:S4
 


:::::: [[File:George 2023 Platelets CORRECTION.png|400px|link=George 2023 Platelets]]
:::::: [[File:George 2023 Platelets CORRECTION.png|400px|link=George 2023 Platelets]]
:::: '''4b.13''' George CE, Saunders CV, Morrison A, Scorer T, Jones S, Dempsey NC (2023) Cold stored platelets in the management of bleeding: is it about bioenergetics? '''Platelets''' 34:2188969 - [[George 2023 Platelets |»Bioblast link«]]
:::: '''4b.13''' George CE, Saunders CV, Morrison A, Scorer T, Jones S, Dempsey NC (2023) Cold stored platelets in the management of bleeding: is it about bioenergetics? '''Platelets''' 34:2188969 - [[George 2023 Platelets |»Bioblast link«]]
:S4
 


:::::: [[File:Gopalakrishnan 2020 Sci Rep CORRECTION.png|400px|link=Gopalakrishnan 2020 Sci Rep]]
:::::: [[File:Gopalakrishnan 2020 Sci Rep CORRECTION.png|400px|link=Gopalakrishnan 2020 Sci Rep]]
:::: '''4b.14''' Gopalakrishnan S, Mehrvar S, Maleki S, Schmitt H, Summerfelt P, Dubis AM, Abroe B, Connor TB Jr, Carroll J, Huddleston W, Ranji M, Eells JT (2020) Photobiomodulation preserves mitochondrial redox state and is retinoprotective in a rodent model of retinitis pigmentosa. '''Sci Rep''' 10:20382. - [[Gopalakrishnan 2020 Sci Rep |»Bioblast link«]]
:::: '''4b.14''' Gopalakrishnan S, Mehrvar S, Maleki S, Schmitt H, Summerfelt P, Dubis AM, Abroe B, Connor TB Jr, Carroll J, Huddleston W, Ranji M, Eells JT (2020) Photobiomodulation preserves mitochondrial redox state and is retinoprotective in a rodent model of retinitis pigmentosa. '''Sci Rep''' 10:20382. - [[Gopalakrishnan 2020 Sci Rep |»Bioblast link«]]
:S4
 


:::::: [[File:Hidalgo-Gutierrez CORRECTION.png|400px|link=Hidalgo-Gutierrez 2021 Antioxidants (Basel)]]
:::::: [[File:Hidalgo-Gutierrez CORRECTION.png|400px|link=Hidalgo-Gutierrez 2021 Antioxidants (Basel)]]
:::: '''4b.15''' Hidalgo-Gutiérrez A, González-García P, Díaz-Casado ME, Barriocanal-Casado E, López-Herrador S, Quinzii CM, López LC (2021) Metabolic targets of coenzyme Q10 in mitochondria. '''Antioxidants (Basel)''' 10:520. - [[Hidalgo-Gutierrez 2021 Antioxidants (Basel) |»Bioblast link«]]
:::: '''4b.15''' Hidalgo-Gutiérrez A, González-García P, Díaz-Casado ME, Barriocanal-Casado E, López-Herrador S, Quinzii CM, López LC (2021) Metabolic targets of coenzyme Q10 in mitochondria. '''Antioxidants (Basel)''' 10:520. - [[Hidalgo-Gutierrez 2021 Antioxidants (Basel) |»Bioblast link«]]
:S4
 


:::::: [[File:Ignatieva 2021 Int J Mol Sci CORRECTION.png|400px|link=Ignatieva 2021 Int J Mol Sci]]
:::::: [[File:Ignatieva 2021 Int J Mol Sci CORRECTION.png|400px|link=Ignatieva 2021 Int J Mol Sci]]
:::: '''4b.16''' Ignatieva E, Smolina N, Kostareva A, Dmitrieva R (2021) Skeletal muscle mitochondria dysfunction in genetic neuromuscular disorders with cardiac phenotype. '''Int J Mol Sci''' 22:7349. - [[Ignatieva 2021 Int J Mol Sci |»Bioblast link«]]
:::: '''4b.16''' Ignatieva E, Smolina N, Kostareva A, Dmitrieva R (2021) Skeletal muscle mitochondria dysfunction in genetic neuromuscular disorders with cardiac phenotype. '''Int J Mol Sci''' 22:7349. - [[Ignatieva 2021 Int J Mol Sci |»Bioblast link«]]
:S4
 


:::::: [[File:Joshi 2022 Biomolecules CORRECTION.png|400px|link=Joshi 2022 Biomolecules]]
:::::: [[File:Joshi 2022 Biomolecules CORRECTION.png|400px|link=Joshi 2022 Biomolecules]]
:::: '''4b.17''' Joshi A, Ito T, Picard D, Neckers L (2022) The mitochondrial HSP90 paralog TRAP1: structural dynamics, interactome, role in metabolic regulation, and inhibitors. '''Biomolecules''' 12:880. - [[Joshi 2022 Biomolecules |»Bioblast link«]]
:::: '''4b.17''' Joshi A, Ito T, Picard D, Neckers L (2022) The mitochondrial HSP90 paralog TRAP1: structural dynamics, interactome, role in metabolic regulation, and inhibitors. '''Biomolecules''' 12:880. - [[Joshi 2022 Biomolecules |»Bioblast link«]]
:S4
 


:::::: [[File:Kalainayakan 2018 Cell Biosci CORRECTION.png|400px|link=Kalainayakan 2018 Cell Biosci]]
:::::: [[File:Kalainayakan 2018 Cell Biosci CORRECTION.png|400px|link=Kalainayakan 2018 Cell Biosci]]
:::: '''4b.18''' Kalainayakan SP, FitzGerald KE, Konduri PC, Vidal C, Zhang L (2018) Essential roles of mitochondrial and heme function in lung cancer bioenergetics and tumorigenesis. '''Cell Biosci''' 8:56. - [[Kalainayakan 2018 Cell Biosci |»Bioblast link«]]
:::: '''4b.18''' Kalainayakan SP, FitzGerald KE, Konduri PC, Vidal C, Zhang L (2018) Essential roles of mitochondrial and heme function in lung cancer bioenergetics and tumorigenesis. '''Cell Biosci''' 8:56. - [[Kalainayakan 2018 Cell Biosci |»Bioblast link«]]
:S4
 


:::::: [[File:Koene 2011 J Inherit Metab Dis CORRECTION.png|400px|link=Koene 2011 J Inherit Metab Dis]]
:::::: [[File:Koene 2011 J Inherit Metab Dis CORRECTION.png|400px|link=Koene 2011 J Inherit Metab Dis]]
:::: '''4b.19''' Koene S, Willems PH, Roestenberg P, Koopman WJ, Smeitink JA (2011) Mouse models for nuclear DNA-encoded mitochondrial complex I deficiency. '''J Inherit Metab Dis''' 34:293-307. - [[Koene 2011 J Inherit Metab Dis |»Bioblast link«]]
:::: '''4b.19''' Koene S, Willems PH, Roestenberg P, Koopman WJ, Smeitink JA (2011) Mouse models for nuclear DNA-encoded mitochondrial complex I deficiency. '''J Inherit Metab Dis''' 34:293-307. - [[Koene 2011 J Inherit Metab Dis |»Bioblast link«]]
:S4
 


:::::: [[File:Lee 2023 Antioxidants (Basel) CORRECTION.png|400px|link=Lee 2023 Antioxidants (Basel)]]
:::::: [[File:Lee 2023 Antioxidants (Basel) CORRECTION.png|400px|link=Lee 2023 Antioxidants (Basel)]]
:::: '''4b.20''' Lee WE, Genetzakis E, Figtree GA (2023) Novel strategies in the early detection and treatment of endothelial cell-specific mitochondrial dysfunction in coronary artery disease. '''Antioxidants (Basel)''' 12:1359. - [[Lee 2023 Antioxidants (Basel) |»Bioblast link«]]
:::: '''4b.20''' Lee WE, Genetzakis E, Figtree GA (2023) Novel strategies in the early detection and treatment of endothelial cell-specific mitochondrial dysfunction in coronary artery disease. '''Antioxidants (Basel)''' 12:1359. - [[Lee 2023 Antioxidants (Basel) |»Bioblast link«]]
:S4
 


:::::: [[File:Lu 2023 Explor Res Hypothesis Med CORRECTION.png|400px|link=Lu 2023 Explor Res Hypothesis Med]]
:::::: [[File:Lu 2023 Explor Res Hypothesis Med CORRECTION.png|400px|link=Lu 2023 Explor Res Hypothesis Med]]
:::: '''4b.21''' Lu F (2023) Hypothetical hydrogenase activity of human mitochondrial Complex I and its role in preventing cancer transformation. '''Explor Res Hypothesis Med''' 8:280-5. - [[Lu 2023 Explor Res Hypothesis Med |»Bioblast link«]]
:::: '''4b.21''' Lu F (2023) Hypothetical hydrogenase activity of human mitochondrial Complex I and its role in preventing cancer transformation. '''Explor Res Hypothesis Med''' 8:280-5. - [[Lu 2023 Explor Res Hypothesis Med |»Bioblast link«]]
:S4
 


:::::: [[File:Manickam 2022 J Control Release CORRECTION.png|400px|link=Manickam 2022 J Control Release]]
:::::: [[File:Manickam 2022 J Control Release CORRECTION.png|400px|link=Manickam 2022 J Control Release]]
:::: '''4b.22''' Manickam DS (2022) Delivery of mitochondria via extracellular vesicles - a new horizon in drug delivery. '''J Control Release''' 343:400-7. - [[Manickam 2022 J Control Release |»Bioblast link«]]
:::: '''4b.22''' Manickam DS (2022) Delivery of mitochondria via extracellular vesicles - a new horizon in drug delivery. '''J Control Release''' 343:400-7. - [[Manickam 2022 J Control Release |»Bioblast link«]]
:S4
 


:::::: [[File:Martell 2023 Nat Commun CORRECTION.png|400px|link=Martell 2023 Nat Commun]]
:::::: [[File:Martell 2023 Nat Commun CORRECTION.png|400px|link=Martell 2023 Nat Commun]]
:::: '''4b.23''' Martell E, Kuzmychova H, Kaul E, Senthil H, Chowdhury SR, Morrison LC, Fresnoza A, Zagozewski J, Venugopal C, Anderson CM, Singh SK, Banerji V, Werbowetski-Ogilvie TE, Sharif T (2023) Metabolism-based targeting of MYC via MPC-SOD2 axis-mediated oxidation promotes cellular differentiation in group 3 medulloblastoma. '''Nat Commun''' 14:2502. - [[Martell 2023 Nat Commun |»Bioblast link«]]
:::: '''4b.23''' Martell E, Kuzmychova H, Kaul E, Senthil H, Chowdhury SR, Morrison LC, Fresnoza A, Zagozewski J, Venugopal C, Anderson CM, Singh SK, Banerji V, Werbowetski-Ogilvie TE, Sharif T (2023) Metabolism-based targeting of MYC via MPC-SOD2 axis-mediated oxidation promotes cellular differentiation in group 3 medulloblastoma. '''Nat Commun''' 14:2502. - [[Martell 2023 Nat Commun |»Bioblast link«]]
:S4
 


:::::: [[File:Mejia-Vergara 2020 Curr Neurol Neurosci Rep CORRECTION.png|400px|link=Mejia-Vergara 2020 Curr Neurol Neurosci Rep]]
:::::: [[File:Mejia-Vergara 2020 Curr Neurol Neurosci Rep CORRECTION.png|400px|link=Mejia-Vergara 2020 Curr Neurol Neurosci Rep]]
:::: '''4b.24''' Mejia-Vergara AJ, Seleme N, Sadun AA, Karanjia R (2020) Pathophysiology of conversion to symptomatic leber hereditary optic neuropathy and therapeutic implications: a review. '''Curr Neurol Neurosci Rep''' 20:11. - [[Mejia-Vergara 2020 Curr Neurol Neurosci Rep |»Bioblast link«]]
:::: '''4b.24''' Mejia-Vergara AJ, Seleme N, Sadun AA, Karanjia R (2020) Pathophysiology of conversion to symptomatic leber hereditary optic neuropathy and therapeutic implications: a review. '''Curr Neurol Neurosci Rep''' 20:11. - [[Mejia-Vergara 2020 Curr Neurol Neurosci Rep |»Bioblast link«]]
:S4
 


:::::: [[File:Musicco 2023 Int J Mol Sci CORRECTION.png|400px|link=Musicco 2023 Int J Mol Sci]]
:::::: [[File:Musicco 2023 Int J Mol Sci CORRECTION.png|400px|link=Musicco 2023 Int J Mol Sci]]
:::: '''4b.25''' Musicco C, Signorile A, Pesce V, Loguercio Polosa P, Cormio A (2023) Mitochondria deregulations in cancer offer several potential targets of therapeutic interventions. '''Int J Mol Sci''' 24:10420. - [[Musicco 2023 Int J Mol Sci |»Bioblast link«]]
:::: '''4b.25''' Musicco C, Signorile A, Pesce V, Loguercio Polosa P, Cormio A (2023) Mitochondria deregulations in cancer offer several potential targets of therapeutic interventions. '''Int J Mol Sci''' 24:10420. - [[Musicco 2023 Int J Mol Sci |»Bioblast link«]]
:S4
 


:::::: [[File:Nguyen 2021 Brief Bioinform CORRECTION.png|400px|link=Nguyen 2021 Brief Bioinform]]
:::::: [[File:Nguyen 2021 Brief Bioinform CORRECTION.png|400px|link=Nguyen 2021 Brief Bioinform]]
:::: '''4b.26''' Nguyen TT, Nguyen DK, Ou YY (2021) Addressing data imbalance problems in ligand-binding site prediction using a variational autoencoder and a convolutional neural network. '''Brief Bioinform''' 22:bbab277. - [[Nguyen 2021 Brief Bioinform |»Bioblast link«]]
:::: '''4b.26''' Nguyen TT, Nguyen DK, Ou YY (2021) Addressing data imbalance problems in ligand-binding site prediction using a variational autoencoder and a convolutional neural network. '''Brief Bioinform''' 22:bbab277. - [[Nguyen 2021 Brief Bioinform |»Bioblast link«]]
:S4
 


:::::: [[File:Payen 2019 Cancer Metastasis Rev CORRECTION.png|400px|link=Payen 2019 Cancer Metastasis Rev]]
:::::: [[File:Payen 2019 Cancer Metastasis Rev CORRECTION.png|400px|link=Payen 2019 Cancer Metastasis Rev]]
:::: '''4b.27''' Payen VL, Zampieri LX, Porporato PE, Sonveaux P (2019) Pro- and antitumor effects of mitochondrial reactive oxygen species. '''Cancer Metastasis Rev''' 38:189-203. - [[Payen 2019 Cancer Metastasis Rev |»Bioblast link«]]
:::: '''4b.27''' Payen VL, Zampieri LX, Porporato PE, Sonveaux P (2019) Pro- and antitumor effects of mitochondrial reactive oxygen species. '''Cancer Metastasis Rev''' 38:189-203. - [[Payen 2019 Cancer Metastasis Rev |»Bioblast link«]]
:S4
 


:::::: [[File:Prasuhn 2021 Front Cell Dev Biol CORRECTION.png|400px|link=Prasuhn 2021 Front Cell Dev Biol]]
:::::: [[File:Prasuhn 2021 Front Cell Dev Biol CORRECTION.png|400px|link=Prasuhn 2021 Front Cell Dev Biol]]
:::: '''4b.28''' Prasuhn J, Davis RL, Kumar KR (2021) Targeting mitochondrial impairment in Parkinson's disease: challenges and opportunities. '''Front Cell Dev Biol''' 8:615461. - [[Prasuhn 2021 Front Cell Dev Biol |»Bioblast link«]]
:::: '''4b.28''' Prasuhn J, Davis RL, Kumar KR (2021) Targeting mitochondrial impairment in Parkinson's disease: challenges and opportunities. '''Front Cell Dev Biol''' 8:615461. - [[Prasuhn 2021 Front Cell Dev Biol |»Bioblast link«]]
:S4
 


:::::: [[File:Sainero-Alcolado 2022 Cell Death Differ CORRECTION.png|400px|link=Sainero-Alcolado 2022 Cell Death Differ]]
:::::: [[File:Sainero-Alcolado 2022 Cell Death Differ CORRECTION.png|400px|link=Sainero-Alcolado 2022 Cell Death Differ]]
:::: '''4b.29''' Sainero-Alcolado L, Liaño-Pons J, Ruiz-Pérez MV, Arsenian-Henriksson M (2022) Targeting mitochondrial metabolism for precision medicine in cancer. '''Cell Death Differ''' 29:1304-17. - [[Sainero-Alcolado 2022 Cell Death Differ |»Bioblast link«]]
:::: '''4b.29''' Sainero-Alcolado L, Liaño-Pons J, Ruiz-Pérez MV, Arsenian-Henriksson M (2022) Targeting mitochondrial metabolism for precision medicine in cancer. '''Cell Death Differ''' 29:1304-17. - [[Sainero-Alcolado 2022 Cell Death Differ |»Bioblast link«]]
:S4
 


:::::: [[File:Schniertshauer 2023 Curr Issues Mol Biol CORRECTION.jpg.png|400px|link=Schniertshauer 2023 Curr Issues Mol Biol]]
:::::: [[File:Schniertshauer 2023 Curr Issues Mol Biol CORRECTION.jpg.png|400px|link=Schniertshauer 2023 Curr Issues Mol Biol]]
:::: '''4b.30''' Schniertshauer D, Wespel S, Bergemann J (2023) Natural mitochondria targeting substances and their effect on cellular antioxidant system as a potential benefit in mitochondrial medicine for prevention and remediation of mitochondrial dysfunctions. '''Curr Issues Mol Biol''' 45:3911-32. - [[Schniertshauer 2023 Curr Issues Mol Biol |»Bioblast link«]]
:::: '''4b.30''' Schniertshauer D, Wespel S, Bergemann J (2023) Natural mitochondria targeting substances and their effect on cellular antioxidant system as a potential benefit in mitochondrial medicine for prevention and remediation of mitochondrial dysfunctions. '''Curr Issues Mol Biol''' 45:3911-32. - [[Schniertshauer 2023 Curr Issues Mol Biol |»Bioblast link«]]
:S4
 


:::::: [[File:Shields 2021 Front Cell Dev Biol CORRECTION.png|400px|link=Shields 2021 Front Cell Dev Biol]]
:::::: [[File:Shields 2021 Front Cell Dev Biol CORRECTION.png|400px|link=Shields 2021 Front Cell Dev Biol]]
:::: '''4b.31''' Shields HJ, Traa A, Van Raamsdonk JM (2021) Beneficial and detrimental effects of reactive oxygen species on lifespan: a comprehensive review of comparative and experimental studies. '''Front Cell Dev Biol''' 9:628157. - [[Shields 2021 Front Cell Dev Biol |»Bioblast link«]]
:::: '''4b.31''' Shields HJ, Traa A, Van Raamsdonk JM (2021) Beneficial and detrimental effects of reactive oxygen species on lifespan: a comprehensive review of comparative and experimental studies. '''Front Cell Dev Biol''' 9:628157. - [[Shields 2021 Front Cell Dev Biol |»Bioblast link«]]
:S4
 


:::::: [[File:Solhaug 2023 Cytotechnology CORRECTION.png|400px|link=Solhaug 2023 Cytotechnology]]
:::::: [[File:Solhaug 2023 Cytotechnology CORRECTION.png|400px|link=Solhaug 2023 Cytotechnology]]
:::: '''4b.32''' Solhaug A, Gjessing M, Sandvik M, Eriksen GS (2023) The gill epithelial cell lines RTgill-W1, from Rainbow trout and ASG-10, from Atlantic salmon, exert different toxicity profiles towards rotenone. '''Cytotechnology''' 75:63-75. - [[Solhaug 2023 Cytotechnology |»Bioblast link«]]
:::: '''4b.32''' Solhaug A, Gjessing M, Sandvik M, Eriksen GS (2023) The gill epithelial cell lines RTgill-W1, from Rainbow trout and ASG-10, from Atlantic salmon, exert different toxicity profiles towards rotenone. '''Cytotechnology''' 75:63-75. - [[Solhaug 2023 Cytotechnology |»Bioblast link«]]
:S4
 


:::::: [[File:Tseng 2022 Cells CORRECTION.png|400px|link=Tseng 2022 Cells]]
:::::: [[File:Tseng 2022 Cells CORRECTION.png|400px|link=Tseng 2022 Cells]]
:::: '''4b.33''' Tseng W-W, Wei A-C (2022) Kinetic mathematical modeling of oxidative phosphorylation in cardiomyocyte mitochondria. '''Cells''' 11:4020. - [[Tseng 2022 Cells |»Bioblast link«]]
:::: '''4b.33''' Tseng W-W, Wei A-C (2022) Kinetic mathematical modeling of oxidative phosphorylation in cardiomyocyte mitochondria. '''Cells''' 11:4020. - [[Tseng 2022 Cells |»Bioblast link«]]
:S4
 


:::::: [[File:Turton 2021 Expert Opinion Orphan Drugs CORRECTION.png|400px|link=Turton 2021 Expert Opinion Orphan Drugs]]
:::::: [[File:Turton 2021 Expert Opinion Orphan Drugs CORRECTION.png|400px|link=Turton 2021 Expert Opinion Orphan Drugs]]
:::: '''4b.34''' Turton N, Bowers N, Khajeh S, Hargreaves IP, Heaton RA (2021) Coenzyme Q10 and the exclusive club of diseases that show a limited response to treatment. '''Expert Opinion Orphan Drugs''' 9:151-60. - [[Turton 2021 Expert Opinion Orphan Drugs |»Bioblast link«]]
:::: '''4b.34''' Turton N, Bowers N, Khajeh S, Hargreaves IP, Heaton RA (2021) Coenzyme Q10 and the exclusive club of diseases that show a limited response to treatment. '''Expert Opinion Orphan Drugs''' 9:151-60. - [[Turton 2021 Expert Opinion Orphan Drugs |»Bioblast link«]]
:S4
 


:::::: [[File:Vargas-Mendoza 2021 Life (Basel) CORRECTION.png|400px|link=Vargas-Mendoza 2021 Life (Basel)]]
:::::: [[File:Vargas-Mendoza 2021 Life (Basel) CORRECTION.png|400px|link=Vargas-Mendoza 2021 Life (Basel)]]
:::: '''4b.35''' Vargas-Mendoza N, Angeles-Valencia M, Morales-González Á, Madrigal-Santillán EO, Morales-Martínez M, Madrigal-Bujaidar E, Álvarez-González I, Gutiérrez-Salinas J, Esquivel-Chirino C, Chamorro-Cevallos G, Cristóbal-Luna JM, Morales-González JA (2021) Oxidative stress, mitochondrial function and adaptation to exercise: new perspectives in nutrition. '''Life (Basel)''' 11:1269. - [[Vargas-Mendoza 2021 Life (Basel) |»Bioblast link«]]
:::: '''4b.35''' Vargas-Mendoza N, Angeles-Valencia M, Morales-González Á, Madrigal-Santillán EO, Morales-Martínez M, Madrigal-Bujaidar E, Álvarez-González I, Gutiérrez-Salinas J, Esquivel-Chirino C, Chamorro-Cevallos G, Cristóbal-Luna JM, Morales-González JA (2021) Oxidative stress, mitochondrial function and adaptation to exercise: new perspectives in nutrition. '''Life (Basel)''' 11:1269. - [[Vargas-Mendoza 2021 Life (Basel) |»Bioblast link«]]
:S4
 


:::::: [[File:Vesga 2021 Med Chem Res CORRECTION.png|400px|link=Vesga 2021 Med Chem Res]]
:::::: [[File:Vesga 2021 Med Chem Res CORRECTION.png|400px|link=Vesga 2021 Med Chem Res]]
:::: '''4b.36''' Vesga LC, Silva AMP, Bernal CC, Mendez-Sánchez SC, Bohórquez ARR (2021) Tetrahydroquinoline/4,5-dihydroisoxazole hybrids with a remarkable effect over mitochondrial bioenergetic metabolism on melanoma cell line B16F10. '''Med Chem Res''' 30:2127–43. - [[Vesga 2021 Med Chem Res |»Bioblast link«]]
:::: '''4b.36''' Vesga LC, Silva AMP, Bernal CC, Mendez-Sánchez SC, Bohórquez ARR (2021) Tetrahydroquinoline/4,5-dihydroisoxazole hybrids with a remarkable effect over mitochondrial bioenergetic metabolism on melanoma cell line B16F10. '''Med Chem Res''' 30:2127–43. - [[Vesga 2021 Med Chem Res |»Bioblast link«]]
:S4
 


:::::: [[File:Wu 2022 Neuromolecular Med CORRECTION.png|400px|link=Wu 2022 Neuromolecular Med]]
:::::: [[File:Wu 2022 Neuromolecular Med CORRECTION.png|400px|link=Wu 2022 Neuromolecular Med]]
:::: '''4b.37''' Wu Z, Ho WS, Lu R (2022) Targeting mitochondrial oxidative phosphorylation in glioblastoma therapy. '''Neuromolecular Med''' 24:18-22. - [[Wu 2022 Neuromolecular Med |»Bioblast link«]]
:::: '''4b.37''' Wu Z, Ho WS, Lu R (2022) Targeting mitochondrial oxidative phosphorylation in glioblastoma therapy. '''Neuromolecular Med''' 24:18-22. - [[Wu 2022 Neuromolecular Med |»Bioblast link«]]
:S4
 


:::::: [[File:Yang 2022 J Cleaner Production CORRECTION.png|400px|link=Yang 2022 J Cleaner Production]]
:::::: [[File:Yang 2022 J Cleaner Production CORRECTION.png|400px|link=Yang 2022 J Cleaner Production]]
:::: '''4b.38''' Yang Y, Zhang X, Hu X, Zhao J, Chen X, Wei X, Yu X (2022) Analysis of the differential metabolic pathway of cultured ''Chlorococcum humicola'' with hydroquinone toxic sludge extract. '''J Cleaner Production''' 370:133486. - [[Yang 2022 J Cleaner Production |»Bioblast link«]]
:::: '''4b.38''' Yang Y, Zhang X, Hu X, Zhao J, Chen X, Wei X, Yu X (2022) Analysis of the differential metabolic pathway of cultured ''Chlorococcum humicola'' with hydroquinone toxic sludge extract. '''J Cleaner Production''' 370:133486. - [[Yang 2022 J Cleaner Production |»Bioblast link«]]
:S4
 


:::::: [[File:Yin 2021 FASEB J CORRECTION.png|400px|link=Yin 2021 FASEB J]]
:::::: [[File:Yin 2021 FASEB J CORRECTION.png|400px|link=Yin 2021 FASEB J]]
:::: '''4b.39''' Yin M, O'Neill LAJ (2021) The role of the electron transport chain in immunity. '''FASEB J''' 35:e21974. - [[Yin 2021 FASEB J |»Bioblast link«]]
:::: '''4b.39''' Yin M, O'Neill LAJ (2021) The role of the electron transport chain in immunity. '''FASEB J''' 35:e21974. - [[Yin 2021 FASEB J |»Bioblast link«]]
:S4
 


=== FADH<sub>2</sub> ⟶ FAD<sup>+</sup> (+H<sup>+</sup> or +2H<sup>+</sup>) ===
=== FADH<sub>2</sub> ⟶ FAD<sup>+</sup> (+H<sup>+</sup> or +2H<sup>+</sup>) ===
Line 1,036: Line 1,038:
:::::: [[File:Area-Gomez 2019 J Clin Invest CORRECTED.png|400px|link=Area-Gomez 2019 J Clin Invest]]
:::::: [[File:Area-Gomez 2019 J Clin Invest CORRECTED.png|400px|link=Area-Gomez 2019 J Clin Invest]]
:::: '''5a.1''' Area-Gomez E, Guardia-Laguarta C, Schon EA, Przedborski S (2019) Mitochondria, OxPhos, and neurodegeneration: cells are not just running out of gas. '''J Clin Invest''' 129:34-45. - [[Area-Gomez 2019 J Clin Invest |»Bioblast link«]]
:::: '''5a.1''' Area-Gomez E, Guardia-Laguarta C, Schon EA, Przedborski S (2019) Mitochondria, OxPhos, and neurodegeneration: cells are not just running out of gas. '''J Clin Invest''' 129:34-45. - [[Area-Gomez 2019 J Clin Invest |»Bioblast link«]]
:S5a
 


:::::: [[File:Bennett 2022 Nat Rev Mol Cell Biol CORRECTION.png|400px|link=Bennett 2022 Nat Rev Mol Cell Biol]]
:::::: [[File:Bennett 2022 Nat Rev Mol Cell Biol CORRECTION.png|400px|link=Bennett 2022 Nat Rev Mol Cell Biol]]
:::: '''5a.2''' Bennett CF, Latorre-Muro P, Puigserver P (2022) Mechanisms of mitochondrial respiratory adaptation. '''Nat Rev Mol Cell Biol''' 23:817-35. - [[Bennett 2022 Nat Rev Mol Cell Biol |»Bioblast link«]]
:::: '''5a.2''' Bennett CF, Latorre-Muro P, Puigserver P (2022) Mechanisms of mitochondrial respiratory adaptation. '''Nat Rev Mol Cell Biol''' 23:817-35. - [[Bennett 2022 Nat Rev Mol Cell Biol |»Bioblast link«]]
:S5a
 


:::::: [[File:Rinaldo 2002 Annu Rev Physiol CORRECTION.png|400px|link=Bennett 2020 Methods Cell Biol]]
:::::: [[File:Rinaldo 2002 Annu Rev Physiol CORRECTION.png|400px|link=Bennett 2020 Methods Cell Biol]]
:::: '''5a.3''' Bennett MJ, Sheng F, Saada A (2020) Biochemical assays of TCA cycle and β-oxidation metabolites. '''Methods Cell Biol''' 155:83-120. - [[Bennett 2020 Methods Cell Biol |»Bioblast link«]]
:::: '''5a.3''' Bennett MJ, Sheng F, Saada A (2020) Biochemical assays of TCA cycle and β-oxidation metabolites. '''Methods Cell Biol''' 155:83-120. - [[Bennett 2020 Methods Cell Biol |»Bioblast link«]]
:S5a
 


:::::: [[File:Carriere 2019 Academic Press CORRECTION.png|400px|link=Carriere 2019 Academic Press]]
:::::: [[File:Carriere 2019 Academic Press CORRECTION.png|400px|link=Carriere 2019 Academic Press]]
:::: '''5a.4''' Carriere A, Casteilla L (2019) Role of mitochondria in adipose tissues metabolism and plasticity. Academic Press In: Mitochondria in obesity and type 2 diabetes. Morio B, Pénicaud L, Rigoulet M (eds) '''Academic Press'''. - [[Carriere 2019 Academic Press |»Bioblast link«]]
:::: '''5a.4''' Carriere A, Casteilla L (2019) Role of mitochondria in adipose tissues metabolism and plasticity. Academic Press In: Mitochondria in obesity and type 2 diabetes. Morio B, Pénicaud L, Rigoulet M (eds) '''Academic Press'''. - [[Carriere 2019 Academic Press |»Bioblast link«]]
:S5a
 


:::::: [[File:Che 2023 Plant Cell Environ CORRECTION.png|250px|link=Che 2023 Plant Cell Environ]]
:::::: [[File:Che 2023 Plant Cell Environ CORRECTION.png|250px|link=Che 2023 Plant Cell Environ]]
:::: '''5a.5''' Che X, Zhang T, Li H, Li Y, Zhang L, Liu J (2023) Nighttime hypoxia effects on ATP availability for photosynthesis in seagrass. '''Plant Cell Environ''' 46:2841-50. - [[Che 2023 Plant Cell Environ |»Bioblast link«]]
:::: '''5a.5''' Che X, Zhang T, Li H, Li Y, Zhang L, Liu J (2023) Nighttime hypoxia effects on ATP availability for photosynthesis in seagrass. '''Plant Cell Environ''' 46:2841-50. - [[Che 2023 Plant Cell Environ |»Bioblast link«]]
:S5a
 


:::::: [[File:Chi 2022 Biomedicines CORRECTION.png|400px|link=Chi 2022 Biomedicines]]
:::::: [[File:Chi 2022 Biomedicines CORRECTION.png|400px|link=Chi 2022 Biomedicines]]
:::: '''5a.6''' Chi SC, Cheng HC, Wang AG (2022) Leber hereditary optic neuropathy: molecular pathophysiology and updates on gene therapy. '''Biomedicines''' 10:1930. - [[Chi 2022 Biomedicines |»Bioblast link«]]
:::: '''5a.6''' Chi SC, Cheng HC, Wang AG (2022) Leber hereditary optic neuropathy: molecular pathophysiology and updates on gene therapy. '''Biomedicines''' 10:1930. - [[Chi 2022 Biomedicines |»Bioblast link«]]
:S5a
 


:::::: [[File:Duan 2019 Aging (Albany NY) CORRECTION.png|400px|link=Duan 2019 Aging (Albany NY)]]
:::::: [[File:Duan 2019 Aging (Albany NY) CORRECTION.png|400px|link=Duan 2019 Aging (Albany NY)]]
:::: '''5a.7''' Duan J, Chen Z, Wu Y, Zhu B, Yang L, Yang C (2019) Metabolic remodeling induced by mitokines in heart failure. '''Aging (Albany NY)''' 11:7307-27. - [[Duan 2019 Aging (Albany NY) |»Bioblast link«]]
:::: '''5a.7''' Duan J, Chen Z, Wu Y, Zhu B, Yang L, Yang C (2019) Metabolic remodeling induced by mitokines in heart failure. '''Aging (Albany NY)''' 11:7307-27. - [[Duan 2019 Aging (Albany NY) |»Bioblast link«]]
:S5a
 


:::::: [[File:Fisher-Wellman 2012 Trends Endocrinol Metab Fig2 CORRECTION.png|700px|link=Fisher-Wellman 2012 Trends Endocrinol Metab]]
:::::: [[File:Fisher-Wellman 2012 Trends Endocrinol Metab Fig2 CORRECTION.png|700px|link=Fisher-Wellman 2012 Trends Endocrinol Metab]]
:::: '''5a.8, 51.9''' Fisher-Wellman KH, Neufer PD (2012) Linking mitochondrial bioenergetics to insulin resistance via redox biology. '''Trends Endocrinol Metab''' 23:142-53. - [[Fisher-Wellman 2012 Trends Endocrinol Metab |»Bioblast link«]]
:::: '''5a.8, 51.9''' Fisher-Wellman KH, Neufer PD (2012) Linking mitochondrial bioenergetics to insulin resistance via redox biology. '''Trends Endocrinol Metab''' 23:142-53. - [[Fisher-Wellman 2012 Trends Endocrinol Metab |»Bioblast link«]]
:S5a
 


:::::: [[File:Floenes 2022 Front Cell Dev Biol CORRECTION.png|250px|link=Floenes 2022 Front Cell Dev Biol]]
:::::: [[File:Floenes 2022 Front Cell Dev Biol CORRECTION.png|250px|link=Floenes 2022 Front Cell Dev Biol]]
:::: '''5a.10''' Flønes IH, Tzoulis C (2022) Mitochondrial respiratory chain dysfunction-a hallmark pathology of idiopathic Parkinson's disease? '''Front Cell Dev Biol''' 10:874596. - [[Floenes 2022 Front Cell Dev Biol |»Bioblast link«]]
:::: '''5a.10''' Flønes IH, Tzoulis C (2022) Mitochondrial respiratory chain dysfunction-a hallmark pathology of idiopathic Parkinson's disease? '''Front Cell Dev Biol''' 10:874596. - [[Floenes 2022 Front Cell Dev Biol |»Bioblast link«]]
:S5a
 


:::::: [[File:Gero 2018 IntechOpen CORRECTION.png|400px|link=Gero 2018 IntechOpen]]
:::::: [[File:Gero 2018 IntechOpen CORRECTION.png|400px|link=Gero 2018 IntechOpen]]
:::: '''5a.11''' Gero D (2023) Hyperglycemia-induced endothelial dysfunction. '''IntechOpen''' Chapter 8. - [[Gero 2018 IntechOpen |»Bioblast link«]]
:::: '''5a.11''' Gero D (2023) Hyperglycemia-induced endothelial dysfunction. '''IntechOpen''' Chapter 8. - [[Gero 2018 IntechOpen |»Bioblast link«]]
:S5a
 


:::::: [[File:Kikusato 2016 Proc Jpn Soc Anim Nutr Metab CORRECTION.png|400px|link=Kikusato 2016 Proc Jpn Soc Anim Nutr Metab]]
:::::: [[File:Kikusato 2016 Proc Jpn Soc Anim Nutr Metab CORRECTION.png|400px|link=Kikusato 2016 Proc Jpn Soc Anim Nutr Metab]]
:::: '''5a.12''' Kikusato M, Furukawa K, Kamizono, Hakamata Y, Toyomizu M (2016) Roles of mitochondrial oxidative phosphorylation and reactive oxygen species generation in the metabolic modification of avian skeletal muscle. '''Proc Jpn Soc Anim Nutr Metab''' 60:57-68. - [[Kikusato 2016 Proc Jpn Soc Anim Nutr Metab |»Bioblast link«]]
:::: '''5a.12''' Kikusato M, Furukawa K, Kamizono, Hakamata Y, Toyomizu M (2016) Roles of mitochondrial oxidative phosphorylation and reactive oxygen species generation in the metabolic modification of avian skeletal muscle. '''Proc Jpn Soc Anim Nutr Metab''' 60:57-68. - [[Kikusato 2016 Proc Jpn Soc Anim Nutr Metab |»Bioblast link«]]
:S5a
 


:::::: [[File:Knott 2009 Antioxid Redox Signal CORRECTION.png|400px|link=Knott 2009 Antioxid Redox Signal]]
:::::: [[File:Knott 2009 Antioxid Redox Signal CORRECTION.png|400px|link=Knott 2009 Antioxid Redox Signal]]
:::: '''5a.13''' Knott AB, Bossy-Wetzel E (2009) Nitric oxide in health and disease of the nervous system. '''Antioxid Redox Signal''' 11:541-54. - [[Knott 2009 Antioxid Redox Signal |»Bioblast link«]]
:::: '''5a.13''' Knott AB, Bossy-Wetzel E (2009) Nitric oxide in health and disease of the nervous system. '''Antioxid Redox Signal''' 11:541-54. - [[Knott 2009 Antioxid Redox Signal |»Bioblast link«]]
:S5a
 


:::::: [[File:Kraegen 2008 Proc Natl Acad Sci U S A CORRECTION.png|400px|link=Kraegen 2008 Proc Natl Acad Sci U S A]]
:::::: [[File:Kraegen 2008 Proc Natl Acad Sci U S A CORRECTION.png|400px|link=Kraegen 2008 Proc Natl Acad Sci U S A]]
:::: '''5a.14''' Kraegen EW, Cooney GJ, Turner N (2008) Muscle insulin resistance: a case of fat overconsumption, not mitochondrial dysfunction. '''Proc Natl Acad Sci U S A''' 105:7627-8. - [[Kraegen 2008 Proc Natl Acad Sci U S A |»Bioblast link«]]
:::: '''5a.14''' Kraegen EW, Cooney GJ, Turner N (2008) Muscle insulin resistance: a case of fat overconsumption, not mitochondrial dysfunction. '''Proc Natl Acad Sci U S A''' 105:7627-8. - [[Kraegen 2008 Proc Natl Acad Sci U S A |»Bioblast link«]]
:S5a
 


:::::: [[File:Lettieri-Barbato 2019 Mol Metab CORRECTION.png|400px|link=Lettieri-Barbato 2019 Mol Metab]]
:::::: [[File:Lettieri-Barbato 2019 Mol Metab CORRECTION.png|400px|link=Lettieri-Barbato 2019 Mol Metab]]
:::: '''5a.15''' Lettieri-Barbato D (2019) Redox control of non-shivering thermogenesis. '''Mol Metab''' 25:11-9. - [[Lettieri-Barbato 2019 Mol Metab |»Bioblast link«]]
:::: '''5a.15''' Lettieri-Barbato D (2019) Redox control of non-shivering thermogenesis. '''Mol Metab''' 25:11-9. - [[Lettieri-Barbato 2019 Mol Metab |»Bioblast link«]]
:S5a
 


:::::: [[File:Loussouarn 2021 Front Immunol CORRECTION.png|400px|link=Loussouarn 2021 Front Immunol]]
:::::: [[File:Loussouarn 2021 Front Immunol CORRECTION.png|400px|link=Loussouarn 2021 Front Immunol]]
:::: '''5a.16''' Loussouarn C, Pers YM, Bony C, Jorgensen C, Noël D (2021) Mesenchymal stromal cell-derived extracellular vesicles regulate the mitochondrial metabolism via transfer of miRNAs. '''Front Immunol''' 12:623973. - [[Loussouarn 2021 Front Immunol |»Bioblast link«]]
:::: '''5a.16''' Loussouarn C, Pers YM, Bony C, Jorgensen C, Noël D (2021) Mesenchymal stromal cell-derived extracellular vesicles regulate the mitochondrial metabolism via transfer of miRNAs. '''Front Immunol''' 12:623973. - [[Loussouarn 2021 Front Immunol |»Bioblast link«]]
:S5a
 


:::::: [[File:Mracek 2013 Biochim Biophys Acta CORRECTION.png|400px|link=Mracek 2013 Biochim Biophys Acta]]
:::::: [[File:Mracek 2013 Biochim Biophys Acta CORRECTION.png|400px|link=Mracek 2013 Biochim Biophys Acta]]
:::: '''5a.17''' Mracek T, Drahota Z, Houstek J (2013) The function and the role of the mitochondrial glycerol-3-phosphate dehydrogenase in mammalian tissues. '''Biochim Biophys Acta''' 1827:401-10. - [[Mracek 2013 Biochim Biophys Acta |»Bioblast link«]]
:::: '''5a.17''' Mracek T, Drahota Z, Houstek J (2013) The function and the role of the mitochondrial glycerol-3-phosphate dehydrogenase in mammalian tissues. '''Biochim Biophys Acta''' 1827:401-10. - [[Mracek 2013 Biochim Biophys Acta |»Bioblast link«]]
:S5a
 


:::::: [[File:Onukwufor 2022 Antioxidants (Basel) CORRECTION.png|400px|link=Onukwufor 2022 Antioxidants (Basel)]]
:::::: [[File:Onukwufor 2022 Antioxidants (Basel) CORRECTION.png|400px|link=Onukwufor 2022 Antioxidants (Basel)]]
:::: '''5a.18''' Onukwufor JO, Dirksen RT, Wojtovich AP (2022) Iron dysregulation in mitochondrial dysfunction and Alzheimer's disease. '''Antioxidants (Basel)''' 11:692. - [[Onukwufor 2022 Antioxidants (Basel) |»Bioblast link«]]
:::: '''5a.18''' Onukwufor JO, Dirksen RT, Wojtovich AP (2022) Iron dysregulation in mitochondrial dysfunction and Alzheimer's disease. '''Antioxidants (Basel)''' 11:692. - [[Onukwufor 2022 Antioxidants (Basel) |»Bioblast link«]]
:S5a
 


:::::: [[File:Perouansky 2023 Exp Biol Med (Maywood) CORRECTION.png|400px|link=Perouansky 2023 Exp Biol Med (Maywood)]]
:::::: [[File:Perouansky 2023 Exp Biol Med (Maywood) CORRECTION.png|400px|link=Perouansky 2023 Exp Biol Med (Maywood)]]
:::: '''5a.19''' Perouansky M, Johnson-Schlitz D, Sedensky MM, Morgan PG (2023) A primordial target: Mitochondria mediate both primary and collateral anesthetic effects of volatile anesthetics. '''Exp Biol Med (Maywood)''' 248:545-52. - [[Perouansky 2023 Exp Biol Med (Maywood) |»Bioblast link«]]
:::: '''5a.19''' Perouansky M, Johnson-Schlitz D, Sedensky MM, Morgan PG (2023) A primordial target: Mitochondria mediate both primary and collateral anesthetic effects of volatile anesthetics. '''Exp Biol Med (Maywood)''' 248:545-52. - [[Perouansky 2023 Exp Biol Med (Maywood) |»Bioblast link«]]
:S5a
 


:::::: [[File:Rinaldo 2002 Annu Rev Physiol CORRECTION.png|400px|link=Rinaldo 2002 Annu Rev Physiol]]
:::::: [[File:Rinaldo 2002 Annu Rev Physiol CORRECTION.png|400px|link=Rinaldo 2002 Annu Rev Physiol]]
:::: '''5a.20''' Rinaldo P, Matern D, Bennett MJ (2002) Fatty acid oxidation disorders. '''Annu Rev Physiol''' 64:477-502. - [[Rinaldo 2002 Annu Rev Physiol |»Bioblast link«]]
:::: '''5a.20''' Rinaldo P, Matern D, Bennett MJ (2002) Fatty acid oxidation disorders. '''Annu Rev Physiol''' 64:477-502. - [[Rinaldo 2002 Annu Rev Physiol |»Bioblast link«]]
:::: '''Copied:''' Bennett MJ, Sheng F, Saada A (2020) Biochemical assays of TCA cycle and β-oxidation metabolites. '''Methods Cell Biol''' 155:83-120. - [[Bennett 2020 Methods Cell Biol |»Bioblast link«]]
:::: '''Copied:''' Bennett MJ, Sheng F, Saada A (2020) Biochemical assays of TCA cycle and β-oxidation metabolites. '''Methods Cell Biol''' 155:83-120. - [[Bennett 2020 Methods Cell Biol |»Bioblast link«]]
:S5a
 


:::::: [[File:Sacchetto 2019 J Clin Med CORRECTION.png|400px|link=Sacchetto 2019 J Clin Med]]
:::::: [[File:Sacchetto 2019 J Clin Med CORRECTION.png|400px|link=Sacchetto 2019 J Clin Med]]
:::: '''5a.21''' Sacchetto C, Sequeira V, Bertero E, Dudek J, Maack C, Calore M (2019) Metabolic alterations in inherited cardiomyopathies. '''J Clin Med''' 8:2195. - [[Sacchetto 2019 J Clin Med |»Bioblast link«]]
:::: '''5a.21''' Sacchetto C, Sequeira V, Bertero E, Dudek J, Maack C, Calore M (2019) Metabolic alterations in inherited cardiomyopathies. '''J Clin Med''' 8:2195. - [[Sacchetto 2019 J Clin Med |»Bioblast link«]]
:S5a
 


:::::: [[File:Schinagl 2016 PLoS One CORRECTION.png|400px|link=Schinagl 2016 PLoS One]]
:::::: [[File:Schinagl 2016 PLoS One CORRECTION.png|400px|link=Schinagl 2016 PLoS One]]
:::: '''5a.22''' Schinagl CW, Vrabl P, Burgstaller W (2016) Adapting high-resolution respirometry to glucose-limited steady state mycelium of the filamentous fungus Penicillium ochrochloron: method development and standardisation. '''PLoS One''' 11:e0146878. - [[Schinagl 2016 PLoS One |»Bioblast link«]]
:::: '''5a.22''' Schinagl CW, Vrabl P, Burgstaller W (2016) Adapting high-resolution respirometry to glucose-limited steady state mycelium of the filamentous fungus Penicillium ochrochloron: method development and standardisation. '''PLoS One''' 11:e0146878. - [[Schinagl 2016 PLoS One |»Bioblast link«]]
:S5a
 


:::::: [[File:Schottlender 2021 Biomolecules CORRECTION.png|400px|link=Schottlender 2021 Biomolecules]]
:::::: [[File:Schottlender 2021 Biomolecules CORRECTION.png|400px|link=Schottlender 2021 Biomolecules]]
:::: '''5a.23''' Schottlender N, Gottfried I, Ashery U (2021) Hyperbaric oxygen treatment: effects on mitochondrial function and oxidative stress. '''Biomolecules''' 11:1827. - [[Schottlender 2021 Biomolecules |»Bioblast link«]]
:::: '''5a.23''' Schottlender N, Gottfried I, Ashery U (2021) Hyperbaric oxygen treatment: effects on mitochondrial function and oxidative stress. '''Biomolecules''' 11:1827. - [[Schottlender 2021 Biomolecules |»Bioblast link«]]
:S5a
 


:::::: [[File:Shirakawa 2023 Sci Rep CORRECTION.png|400px|link=Shirakawa 2023 Sci Rep]]
:::::: [[File:Shirakawa 2023 Sci Rep CORRECTION.png|400px|link=Shirakawa 2023 Sci Rep]]
:::: '''5a.24''' Shirakawa R, Nakajima T, Yoshimura A, Kawahara Y, Orito C, Yamane M, Handa H, Takada S, Furihata T, Fukushima A, Ishimori N, Nakagawa M, Yokota I, Sabe H, Hashino S, Kinugawa S, Yokota T (2023) Enhanced mitochondrial oxidative metabolism in peripheral blood mononuclear cells is associated with fatty liver in obese young adults. '''Sci Rep''' 13:5203. - [[Shirakawa 2023 Sci Rep |»Bioblast link«]]
:::: '''5a.24''' Shirakawa R, Nakajima T, Yoshimura A, Kawahara Y, Orito C, Yamane M, Handa H, Takada S, Furihata T, Fukushima A, Ishimori N, Nakagawa M, Yokota I, Sabe H, Hashino S, Kinugawa S, Yokota T (2023) Enhanced mitochondrial oxidative metabolism in peripheral blood mononuclear cells is associated with fatty liver in obese young adults. '''Sci Rep''' 13:5203. - [[Shirakawa 2023 Sci Rep |»Bioblast link«]]
:::::: While CI functions as a proton pump, CII does not. Depicting CII as a proton pump would be analogous to falsely portraying FADH<sub>2</sub> as the substrate of CII, as if it were a copy of CI, which functions as a proton pump with NADH as its substrate.
:::::: While CI functions as a proton pump, CII does not. Depicting CII as a proton pump would be analogous to falsely portraying FADH<sub>2</sub> as the substrate of CII, as if it were a copy of CI, which functions as a proton pump with NADH as its substrate.
:S5a
 


:::::: [[File:Sullivan 2014 Cell Cycle CORRECTION.png|400px|link=Sullivan 2014 Cell Cycle]]
:::::: [[File:Sullivan 2014 Cell Cycle CORRECTION.png|400px|link=Sullivan 2014 Cell Cycle]]
:::: '''5a.25''' Sullivan LB, Chandel NS (2014) Mitochondrial metabolism in TCA cycle mutant cancer cells. '''Cell Cycle''' 13:347-8. - [[Sullivan 2014 Cell Cycle |»Bioblast link«]]
:::: '''5a.25''' Sullivan LB, Chandel NS (2014) Mitochondrial metabolism in TCA cycle mutant cancer cells. '''Cell Cycle''' 13:347-8. - [[Sullivan 2014 Cell Cycle |»Bioblast link«]]
:S5a
 


:::::: [[File:Tanaka 2022 Cells CORRECTED.png|400px|link=Tanaka 2022 Cells]]
:::::: [[File:Tanaka 2022 Cells CORRECTED.png|400px|link=Tanaka 2022 Cells]]
:::: '''5a.26''' Tanaka M, Szabó Á, Spekker E, Polyák H, Tóth F, Vécsei L (2022) Mitochondrial impairment: a common motif in neuropsychiatric presentation? The link to the tryptophan-kynurenine metabolic system. '''Cells''' 11:2607. - [[Tanaka 2022 Cells |»Bioblast link«]]
:::: '''5a.26''' Tanaka M, Szabó Á, Spekker E, Polyák H, Tóth F, Vécsei L (2022) Mitochondrial impairment: a common motif in neuropsychiatric presentation? The link to the tryptophan-kynurenine metabolic system. '''Cells''' 11:2607. - [[Tanaka 2022 Cells |»Bioblast link«]]
:S5a
 


:::::: [[File:Valle-Mendiola 2020 Cancers (Basel) CORRECTION.png|400px|link=Valle-Mendiola 2020 Cancers (Basel)]]
:::::: [[File:Valle-Mendiola 2020 Cancers (Basel) CORRECTION.png|400px|link=Valle-Mendiola 2020 Cancers (Basel)]]
:::: '''5a.27''' Valle-Mendiola A, Soto-Cruz I (2020) Energy metabolism in cancer: The roles of STAT3 and STAT5 in the regulation of metabolism-related genes. '''Cancers (Basel)''' 12:124. - [[Valle-Mendiola 2020 Cancers (Basel) |»Bioblast link«]]
:::: '''5a.27''' Valle-Mendiola A, Soto-Cruz I (2020) Energy metabolism in cancer: The roles of STAT3 and STAT5 in the regulation of metabolism-related genes. '''Cancers (Basel)''' 12:124. - [[Valle-Mendiola 2020 Cancers (Basel) |»Bioblast link«]]
:S5a
 


:::::: [[File:Vartak 2013 Protein Cell CORRECTION.png|400px|link=Vartak 2013 Protein Cell]]
:::::: [[File:Vartak 2013 Protein Cell CORRECTION.png|400px|link=Vartak 2013 Protein Cell]]
:::: '''5a.28''' Vartak R, Porras CA, Bai Y (2013) Respiratory supercomplexes: structure, function and assembly. '''Protein Cell''' 4:582-90. - [[Vartak 2013 Protein Cell |»Bioblast link«]]
:::: '''5a.28''' Vartak R, Porras CA, Bai Y (2013) Respiratory supercomplexes: structure, function and assembly. '''Protein Cell''' 4:582-90. - [[Vartak 2013 Protein Cell |»Bioblast link«]]
:S5a
 


:::::: [[File:Wang 2019 Trends Biochem Sci CORRECTION.png|400px|link=Wang 2019 Trends Biochem Sci]]
:::::: [[File:Wang 2019 Trends Biochem Sci CORRECTION.png|400px|link=Wang 2019 Trends Biochem Sci]]
:::: '''5a.29''' Wang K, Jiang J, Lei Y, Zhou S, Wei Y, Huang C (2019) Targeting metabolic-redox circuits for cancer therapy. '''Trends Biochem Sci''' 44:401-14. - [[Wang 2019 Trends Biochem Sci |»Bioblast link«]]
:::: '''5a.29''' Wang K, Jiang J, Lei Y, Zhou S, Wei Y, Huang C (2019) Targeting metabolic-redox circuits for cancer therapy. '''Trends Biochem Sci''' 44:401-14. - [[Wang 2019 Trends Biochem Sci |»Bioblast link«]]
:S5a
 


:::::: [[File:Wang 2023 Biomolecules CORRECTION.png|400px|link=Wang 2023 Biomolecules]]
:::::: [[File:Wang 2023 Biomolecules CORRECTION.png|400px|link=Wang 2023 Biomolecules]]
:::: '''5a.30''' Wang R, Liang L, Matsumoto M, Iwata K, Umemura A, He F (2023) Reactive oxygen species and NRF2 signaling, friends or foes in cancer? '''Biomolecules''' 13:353. - [[Wang 2023 Biomolecules |»Bioblast link«]]
:::: '''5a.30''' Wang R, Liang L, Matsumoto M, Iwata K, Umemura A, He F (2023) Reactive oxygen species and NRF2 signaling, friends or foes in cancer? '''Biomolecules''' 13:353. - [[Wang 2023 Biomolecules |»Bioblast link«]]
:S5a
 


:::::: [[File:Zhao 2021 Trends Cancer CORRECTION.png|400px|link=Zhao 2021 Trends Cancer]]
:::::: [[File:Zhao 2021 Trends Cancer CORRECTION.png|400px|link=Zhao 2021 Trends Cancer]]
:::: '''5a.31''' Zhao H, Swanson KD, Zheng B (2021) Therapeutic repurposing of biguanides in cancer. '''Trends Cancer''' 7:714-30. - [[Zhao 2021 Trends Cancer |»Bioblast link«]]
:::: '''5a.31''' Zhao H, Swanson KD, Zheng B (2021) Therapeutic repurposing of biguanides in cancer. '''Trends Cancer''' 7:714-30. - [[Zhao 2021 Trends Cancer |»Bioblast link«]]
:S5a
 




Line 1,161: Line 1,163:
:::::: [[File:Lima 2021 Nat Metab CORRECTION.png|400px|link=Lima 2021 Nat Metab]]
:::::: [[File:Lima 2021 Nat Metab CORRECTION.png|400px|link=Lima 2021 Nat Metab]]
:::: '''5b.1''' Lima A, Lubatti G, Burgstaller J, Hu D, Green AP, Di Gregorio A, Zawadzki T, Pernaute B, Mahammadov E, Perez-Montero S, Dore M, Sanchez JM, Bowling S, Sancho M, Kolbe T, Karimi MM, Carling D, Jones N, Srinivas S, Scialdone A, Rodriguez TA (2021) Cell competition acts as a purifying selection to eliminate cells with mitochondrial defects during early mouse development. '''Nat Metab''' 3:1091-108. - [[Lima 2021 Nat Metab |»Bioblast link«]]
:::: '''5b.1''' Lima A, Lubatti G, Burgstaller J, Hu D, Green AP, Di Gregorio A, Zawadzki T, Pernaute B, Mahammadov E, Perez-Montero S, Dore M, Sanchez JM, Bowling S, Sancho M, Kolbe T, Karimi MM, Carling D, Jones N, Srinivas S, Scialdone A, Rodriguez TA (2021) Cell competition acts as a purifying selection to eliminate cells with mitochondrial defects during early mouse development. '''Nat Metab''' 3:1091-108. - [[Lima 2021 Nat Metab |»Bioblast link«]]
:S5b
 


:::::: [[File:Liu 2020 Am J Physiol Heart Circ Physiol CORRECTION.png|400px|link=Liu 2020 Am J Physiol Heart Circ Physiol]]
:::::: [[File:Liu 2020 Am J Physiol Heart Circ Physiol CORRECTION.png|400px|link=Liu 2020 Am J Physiol Heart Circ Physiol]]
:::: '''5b.2''' Liu R, Jagannathan R, Sun L, Li F, Yang P, Lee J, Negi V, Perez-Garcia EM, Shiva S, Yechoor VK, Moulik M (2020) Tead1 is essential for mitochondrial function in cardiomyocytes. '''Am J Physiol Heart Circ Physiol''' 319:H89-99. - [[Liu 2020 Am J Physiol Heart Circ Physiol |»Bioblast link«]]
:::: '''5b.2''' Liu R, Jagannathan R, Sun L, Li F, Yang P, Lee J, Negi V, Perez-Garcia EM, Shiva S, Yechoor VK, Moulik M (2020) Tead1 is essential for mitochondrial function in cardiomyocytes. '''Am J Physiol Heart Circ Physiol''' 319:H89-99. - [[Liu 2020 Am J Physiol Heart Circ Physiol |»Bioblast link«]]
:S5b
 




Line 1,172: Line 1,174:
:::::: [[File:Bratic 2013 J Clin Invest CORRECTION.png|400px|link=Bratic 2013 J Clin Invest]]
:::::: [[File:Bratic 2013 J Clin Invest CORRECTION.png|400px|link=Bratic 2013 J Clin Invest]]
:::: '''5c.1''' Bratic A, Larsson NG (2013) The role of mitochondria in aging. '''J Clin Invest''' 123:951-7. - [[Bratic 2013 J Clin Invest |»Bioblast link«]]
:::: '''5c.1''' Bratic A, Larsson NG (2013) The role of mitochondria in aging. '''J Clin Invest''' 123:951-7. - [[Bratic 2013 J Clin Invest |»Bioblast link«]]
:S5c
 


:::::: [[File:Brischigliaro 2021 Biochim Biophys Acta Bioenerg CORRECTION.png|400px|link=Brischigliaro 2021 Biochim Biophys Acta Bioenerg]]
:::::: [[File:Brischigliaro 2021 Biochim Biophys Acta Bioenerg CORRECTION.png|400px|link=Brischigliaro 2021 Biochim Biophys Acta Bioenerg]]
:::: '''5c.2''' Brischigliaro M, Zeviani M (2021) Cytochrome c oxidase deficiency. '''Biochim Biophys Acta Bioenerg''' 1862:148335. - [[Brischigliaro 2021 Biochim Biophys Acta Bioenerg |»Bioblast link«]]
:::: '''5c.2''' Brischigliaro M, Zeviani M (2021) Cytochrome c oxidase deficiency. '''Biochim Biophys Acta Bioenerg''' 1862:148335. - [[Brischigliaro 2021 Biochim Biophys Acta Bioenerg |»Bioblast link«]]
:S5c
 


:::::: [[File:Cerqua 2021 Springer Cham CORRECTION.png|400px|link=Cerqua 2021 Springer, Cham]]
:::::: [[File:Cerqua 2021 Springer Cham CORRECTION.png|400px|link=Cerqua 2021 Springer, Cham]]
:::: '''5c.3''' Cerqua C, Buson L, Trevisson E (2021) Mutations in assembly dactors required for the biogenesis of mitochondrial respiratory chain. '''Springer, Cham''' In: Navas P, Salviati L (eds) Mitochondrial diseases. - [[Cerqua 2021 Springer, Cham |»Bioblast link«]]
:::: '''5c.3''' Cerqua C, Buson L, Trevisson E (2021) Mutations in assembly dactors required for the biogenesis of mitochondrial respiratory chain. '''Springer, Cham''' In: Navas P, Salviati L (eds) Mitochondrial diseases. - [[Cerqua 2021 Springer, Cham |»Bioblast link«]]
:S5c
 


:::::: [[File:DeBalsi 2017 Ageing Res Rev CORRECTION.png|400px|link=DeBalsi 2017 Ageing Res Rev]]
:::::: [[File:DeBalsi 2017 Ageing Res Rev CORRECTION.png|400px|link=DeBalsi 2017 Ageing Res Rev]]
:::: '''5c.4''' DeBalsi KL, Hoff KE, Copeland WC (2017) Role of the mitochondrial DNA replication machinery in mitochondrial DNA mutagenesis, aging and age-related diseases. '''Ageing Res Rev''' 33:89-104. - [[DeBalsi 2017 Ageing Res Rev |»Bioblast link«]]
:::: '''5c.4''' DeBalsi KL, Hoff KE, Copeland WC (2017) Role of the mitochondrial DNA replication machinery in mitochondrial DNA mutagenesis, aging and age-related diseases. '''Ageing Res Rev''' 33:89-104. - [[DeBalsi 2017 Ageing Res Rev |»Bioblast link«]]
:S5c
 


:::::: [[File:Gallinat 2022 Int J Mol Sci CORRECTION.png|400px|link=Gallinat 2022 Int J Mol Sci]]
:::::: [[File:Gallinat 2022 Int J Mol Sci CORRECTION.png|400px|link=Gallinat 2022 Int J Mol Sci]]
:::: '''5c.5''' Gallinat A, Vilahur G, Padró T, Badimon L (2022) Network-assisted systems biology analysis of the mitochondrial proteome in a pre-clinical model of ischemia, revascularization and post-conditioning. '''Int J Mol Sci''' 23:2087. - [[Gallinat 2022 Int J Mol Sci |»Bioblast link«]]
:::: '''5c.5''' Gallinat A, Vilahur G, Padró T, Badimon L (2022) Network-assisted systems biology analysis of the mitochondrial proteome in a pre-clinical model of ischemia, revascularization and post-conditioning. '''Int J Mol Sci''' 23:2087. - [[Gallinat 2022 Int J Mol Sci |»Bioblast link«]]
:S5c
 


:::::: [[File:Glombik 2021 Cells CORRECTION.png|400px|link=Glombik 2021 Cells]]
:::::: [[File:Glombik 2021 Cells CORRECTION.png|400px|link=Glombik 2021 Cells]]
:::: '''5c.6''' Głombik K, Detka J, Budziszewska B (2021) Hormonal regulation of oxidative phosphorylation in the brain in health and disease. '''Cells''' 10:2937. - [[Glombik 2021 Cells |»Bioblast link«]]
:::: '''5c.6''' Głombik K, Detka J, Budziszewska B (2021) Hormonal regulation of oxidative phosphorylation in the brain in health and disease. '''Cells''' 10:2937. - [[Glombik 2021 Cells |»Bioblast link«]]
:S5c
 


:::::: [[File:Keidar 2023 Front Physiol CORRECTION.png|400px|link=Keidar 2023 Front Physiol]]
:::::: [[File:Keidar 2023 Front Physiol CORRECTION.png|400px|link=Keidar 2023 Front Physiol]]
:::: '''5c.7''' Keidar N, Peretz NK, Yaniv Y (2023) Ca<sup>2+</sup> pushes and pulls energetics to maintain ATP balance in atrial cells: computational insights. '''Front Physiol''' 14:1231259. - [[Keidar 2023 Front Physiol |»Bioblast link«]]
:::: '''5c.7''' Keidar N, Peretz NK, Yaniv Y (2023) Ca<sup>2+</sup> pushes and pulls energetics to maintain ATP balance in atrial cells: computational insights. '''Front Physiol''' 14:1231259. - [[Keidar 2023 Front Physiol |»Bioblast link«]]
:S5c
 




Line 1,203: Line 1,205:
:::::: [[File:Yan 2014 J Diabetes Res CORRECTION.png|400px|link=Yan 2014 J Diabetes Res]]
:::::: [[File:Yan 2014 J Diabetes Res CORRECTION.png|400px|link=Yan 2014 J Diabetes Res]]
:::: '''5d.1''' Yan LJ (2014) Pathogenesis of chronic hyperglycemia: from reductive stress to oxidative stress. '''J Diabetes Res''' 2014:137919. - [[Yan 2014 J Diabetes Res |»Bioblast link«]]
:::: '''5d.1''' Yan LJ (2014) Pathogenesis of chronic hyperglycemia: from reductive stress to oxidative stress. '''J Diabetes Res''' 2014:137919. - [[Yan 2014 J Diabetes Res |»Bioblast link«]]
:S5d
 




Line 1,212: Line 1,214:
:::::: [[File:Cadonic 2016 Mol Neurobiol CORRECTION.png|400px|link=Cadonic 2016 Mol Neurobiol]]
:::::: [[File:Cadonic 2016 Mol Neurobiol CORRECTION.png|400px|link=Cadonic 2016 Mol Neurobiol]]
:::: '''6a.1''' Cadonic C, Sabbir MG, Albensi BC (2016) Mechanisms of mitochondrial dysfunction in Alzheimer's disease. '''Mol Neurobiol''' 53:6078-90. - [[Cadonic 2016 Mol Neurobiol |»Bioblast link«]]
:::: '''6a.1''' Cadonic C, Sabbir MG, Albensi BC (2016) Mechanisms of mitochondrial dysfunction in Alzheimer's disease. '''Mol Neurobiol''' 53:6078-90. - [[Cadonic 2016 Mol Neurobiol |»Bioblast link«]]
:S6a
 


:::::: [[File:Kezic 2016 Oxid Med Cell Longev CORRECTION.png|400px|link=Kezic 2016 Oxid Med Cell Longev]]
:::::: [[File:Kezic 2016 Oxid Med Cell Longev CORRECTION.png|400px|link=Kezic 2016 Oxid Med Cell Longev]]
:::: '''6a.2''' Kezic A, Spasojevic I, Lezaic V, Bajcetic M (2016) Mitochondria-targeted antioxidants: future perspectives in kidney ischemia reperfusion injury. '''Oxid Med Cell Longev''' 2016:2950503. - [[Kezic 2016 Oxid Med Cell Longev |»Bioblast link«]]
:::: '''6a.2''' Kezic A, Spasojevic I, Lezaic V, Bajcetic M (2016) Mitochondria-targeted antioxidants: future perspectives in kidney ischemia reperfusion injury. '''Oxid Med Cell Longev''' 2016:2950503. - [[Kezic 2016 Oxid Med Cell Longev |»Bioblast link«]]
:S6a
 


:::::: [[File:Li 2013 J Hematol Oncol CORRECTION.png|400px|link=Li 2013 J Hematol Oncol]]
:::::: [[File:Li 2013 J Hematol Oncol CORRECTION.png|400px|link=Li 2013 J Hematol Oncol]]
:::: '''6a.3''' Li X, Fang P, Mai J, Choi ET, Wang H, Yang XF (2013) Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. '''J Hematol Oncol''' 6:19. - [[Li 2013 J Hematol Oncol |»Bioblast link«]]
:::: '''6a.3''' Li X, Fang P, Mai J, Choi ET, Wang H, Yang XF (2013) Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. '''J Hematol Oncol''' 6:19. - [[Li 2013 J Hematol Oncol |»Bioblast link«]]
:S6a
 


:::::: [[File:Liskova 2021 Int J Mol Sci CORRECTION.png|400px|link=Liskova 2021 Int J Mol Sci]]
:::::: [[File:Liskova 2021 Int J Mol Sci CORRECTION.png|400px|link=Liskova 2021 Int J Mol Sci]]
:::: '''6a.4''' Liskova A, Samec M, Koklesova L, Kudela E, Kubatka P, Golubnitschaja O (2021) Mitochondriopathies as a clue to systemic disorders-analytical tools and mitigating measures in context of predictive, preventive, and personalized (3P) medicine. '''Int J Mol Sci''' 22:2007. - [[Liskova 2021 Int J Mol Sci |»Bioblast link«]]
:::: '''6a.4''' Liskova A, Samec M, Koklesova L, Kudela E, Kubatka P, Golubnitschaja O (2021) Mitochondriopathies as a clue to systemic disorders-analytical tools and mitigating measures in context of predictive, preventive, and personalized (3P) medicine. '''Int J Mol Sci''' 22:2007. - [[Liskova 2021 Int J Mol Sci |»Bioblast link«]]
:S6a
 


:::::: [[File:Sander 2022 Rev Med Virol CORRECTION.png|400px|link=Sander 2022 Rev Med Virol]]
:::::: [[File:Sander 2022 Rev Med Virol CORRECTION.png|400px|link=Sander 2022 Rev Med Virol]]
:::: '''6a.5''' Sander WJ, Fourie C, Sabiu S, O'Neill FH, Pohl CH, O'Neill HG (2022) Reactive oxygen species as potential antiviral targets. '''Rev Med Virol''' 32:e2240. - [[Sander 2022 Rev Med Virol |»Bioblast link«]]
:::: '''6a.5''' Sander WJ, Fourie C, Sabiu S, O'Neill FH, Pohl CH, O'Neill HG (2022) Reactive oxygen species as potential antiviral targets. '''Rev Med Virol''' 32:e2240. - [[Sander 2022 Rev Med Virol |»Bioblast link«]]
:S6a
 


:::::: [[File:Steiner 2017 Int J Biochem Cell Biol CORRECTION.png|400px|link=Steiner 2017 Int J Biochem Cell Biol]]
:::::: [[File:Steiner 2017 Int J Biochem Cell Biol CORRECTION.png|400px|link=Steiner 2017 Int J Biochem Cell Biol]]
:::: '''6a.6''' Steiner JL, Lang CH (2017) Etiology of alcoholic cardiomyopathy: Mitochondria, oxidative stress and apoptosis. '''Int J Biochem Cell Biol''' 89:125-35. - [[Steiner 2017 Int J Biochem Cell Biol |»Bioblast link«]]
:::: '''6a.6''' Steiner JL, Lang CH (2017) Etiology of alcoholic cardiomyopathy: Mitochondria, oxidative stress and apoptosis. '''Int J Biochem Cell Biol''' 89:125-35. - [[Steiner 2017 Int J Biochem Cell Biol |»Bioblast link«]]
:S6a
 


:::::: [[File:Tabassum 2020 J Biomed Res Environ Sci CORRECTION.png|400px|link=Tabassum 2020 J Biomed Res Environ Sci]]
:::::: [[File:Tabassum 2020 J Biomed Res Environ Sci CORRECTION.png|400px|link=Tabassum 2020 J Biomed Res Environ Sci]]
:::: '''6a.7''' Tabassum N, Kheya IS, Ibn Asaduzzaman SA, Maniha SM, Fayz AH, Zakaria A, Fayz AH, Zakaria A, Noor R (2020) A review on the possible leakage of electrons through the electron transport chain within mitochondria. '''J Biomed Res Environ Sci''' 1:105-13. - [[Tabassum 2020 J Biomed Res Environ Sci |»Bioblast link«]]
:::: '''6a.7''' Tabassum N, Kheya IS, Ibn Asaduzzaman SA, Maniha SM, Fayz AH, Zakaria A, Fayz AH, Zakaria A, Noor R (2020) A review on the possible leakage of electrons through the electron transport chain within mitochondria. '''J Biomed Res Environ Sci''' 1:105-13. - [[Tabassum 2020 J Biomed Res Environ Sci |»Bioblast link«]]
:S6a
 


:::::: [[File:Yang 2020 Transl Neurodegener CORRECTION.png|400px|link=Yang 2020 Transl Neurodegener]]
:::::: [[File:Yang 2020 Transl Neurodegener CORRECTION.png|400px|link=Yang 2020 Transl Neurodegener]]
:::: '''6a.8''' Yang L, Youngblood H, Wu C, Zhang Q (2020) Mitochondria as a target for neuroprotection: role of methylene blue and photobiomodulation. '''Transl Neurodegener''' 9:19. - [[Yang 2020 Transl Neurodegener |»Bioblast link«]]
:::: '''6a.8''' Yang L, Youngblood H, Wu C, Zhang Q (2020) Mitochondria as a target for neuroprotection: role of methylene blue and photobiomodulation. '''Transl Neurodegener''' 9:19. - [[Yang 2020 Transl Neurodegener |»Bioblast link«]]
:S6a
 


:::::: [[File:Yu 2023 Antioxidants (Basel) CORRECTION.png|400px|link=Yu 2023 Antioxidants (Basel)]]
:::::: [[File:Yu 2023 Antioxidants (Basel) CORRECTION.png|400px|link=Yu 2023 Antioxidants (Basel)]]
:::: '''6a.9''' Yu T, Wang L, Zhang L, Deuster PA (2023) Mitochondrial fission as a therapeutic target for metabolic diseases: insights into antioxidant strategies. '''Antioxidants (Basel)''' 12:1163. - [[Yu 2023 Antioxidants (Basel) |»Bioblast link«]]
:::: '''6a.9''' Yu T, Wang L, Zhang L, Deuster PA (2023) Mitochondrial fission as a therapeutic target for metabolic diseases: insights into antioxidant strategies. '''Antioxidants (Basel)''' 12:1163. - [[Yu 2023 Antioxidants (Basel) |»Bioblast link«]]
:S6a
 




Line 1,251: Line 1,253:
:::::: [[File:Burgin 2020 FEBS Lett CORRECTION.png|400px|link=Burgin 2020 FEBS Lett]]
:::::: [[File:Burgin 2020 FEBS Lett CORRECTION.png|400px|link=Burgin 2020 FEBS Lett]]
:::: '''6b.1''' Burgin HJ, McKenzie M (2020) Understanding the role of OXPHOS dysfunction in the pathogenesis of ECHS1 deficiency. '''FEBS Lett''' 594:590-610. - [[Burgin 2020 FEBS Lett |»Bioblast link«]]
:::: '''6b.1''' Burgin HJ, McKenzie M (2020) Understanding the role of OXPHOS dysfunction in the pathogenesis of ECHS1 deficiency. '''FEBS Lett''' 594:590-610. - [[Burgin 2020 FEBS Lett |»Bioblast link«]]
:S6b
 




Line 1,258: Line 1,260:
:::::: [[File:Achreja 2022 Nat Metab CORRECTION.png|400px|link=Achreja 2022 Nat Metab]]
:::::: [[File:Achreja 2022 Nat Metab CORRECTION.png|400px|link=Achreja 2022 Nat Metab]]
:::: '''6c.1''' Achreja A, Yu T, Mittal A, Choppara S, Animasahun O, Nenwani M, Wuchu F, Meurs N, Mohan A, Jeon JH, Sarangi I, Jayaraman A, Owen S, Kulkarni R, Cusato M, Weinberg F, Kweon HK, Subramanian C, Wicha MS, Merajver SD, Nagrath S, Cho KR, DiFeo A, Lu X, Nagrath D (2022) Metabolic collateral lethal target identification reveals MTHFD2 paralogue dependency in ovarian cancer. '''Nat Metab''' 4:1119-37. - [[Achreja 2022 Nat Metab |»Bioblast link«]]
:::: '''6c.1''' Achreja A, Yu T, Mittal A, Choppara S, Animasahun O, Nenwani M, Wuchu F, Meurs N, Mohan A, Jeon JH, Sarangi I, Jayaraman A, Owen S, Kulkarni R, Cusato M, Weinberg F, Kweon HK, Subramanian C, Wicha MS, Merajver SD, Nagrath S, Cho KR, DiFeo A, Lu X, Nagrath D (2022) Metabolic collateral lethal target identification reveals MTHFD2 paralogue dependency in ovarian cancer. '''Nat Metab''' 4:1119-37. - [[Achreja 2022 Nat Metab |»Bioblast link«]]
:S6c
 


:::::: [[File:Torres 2017 Cell Metab CORRECTION.png|400px|link=Torres 2018 Cell Metab]]
:::::: [[File:Torres 2017 Cell Metab CORRECTION.png|400px|link=Torres 2018 Cell Metab]]
:::: '''6c.2''' Torres MJ, Kew KA, Ryan TE, Pennington ER, Lin CT, Buddo KA, Fix AM, Smith CA, Gilliam LA, Karvinen S, Lowe DA, Spangenburg EE, Zeczycki TN, Shaikh SR, Neufer PD (2018) 17β-estradiol directly lowers mitochondrial membrane microviscosity and improves bioenergetic function in skeletal muscle. '''Cell Metab''' 27:167-79. - [[Torres 2018 Cell Metab |»Bioblast link«]]
:::: '''6c.2''' Torres MJ, Kew KA, Ryan TE, Pennington ER, Lin CT, Buddo KA, Fix AM, Smith CA, Gilliam LA, Karvinen S, Lowe DA, Spangenburg EE, Zeczycki TN, Shaikh SR, Neufer PD (2018) 17β-estradiol directly lowers mitochondrial membrane microviscosity and improves bioenergetic function in skeletal muscle. '''Cell Metab''' 27:167-79. - [[Torres 2018 Cell Metab |»Bioblast link«]]
:S6c
 




Line 1,269: Line 1,271:
:::::: [[File:Johnson 2013 Eukaryot Cell CORRECTION.png|400px|link=Johnson 2013 Eukaryot Cell]]
:::::: [[File:Johnson 2013 Eukaryot Cell CORRECTION.png|400px|link=Johnson 2013 Eukaryot Cell]]
:::: '''7a.1''' Johnson X, Alric J (2013) Central carbon metabolism and electron transport in Chlamydomonas reinhardtii: metabolic constraints for carbon partitioning between oil and starch. '''Eukaryot Cell''' 12:776-93. - [[Johnson 2013 Eukaryot Cell |»Bioblast link«]]
:::: '''7a.1''' Johnson X, Alric J (2013) Central carbon metabolism and electron transport in Chlamydomonas reinhardtii: metabolic constraints for carbon partitioning between oil and starch. '''Eukaryot Cell''' 12:776-93. - [[Johnson 2013 Eukaryot Cell |»Bioblast link«]]
:S7a
 


:::::: [[File:Kuznetsov 2022 Antioxidants (Basel) CORRECTION.png|400px|link=Kuznetsov 2022 Antioxidants (Basel)]]
:::::: [[File:Kuznetsov 2022 Antioxidants (Basel) CORRECTION.png|400px|link=Kuznetsov 2022 Antioxidants (Basel)]]
:::: '''7a.2''' Kuznetsov AV, Margreiter R, Ausserlechner MJ, Hagenbuchner J (2022) The complex interplay between mitochondria, ROS and entire cellular metabolism. '''Antioxidants (Basel)''' 11:1995. - [[Kuznetsov 2022 Antioxidants (Basel) |»Bioblast link«]]
:::: '''7a.2''' Kuznetsov AV, Margreiter R, Ausserlechner MJ, Hagenbuchner J (2022) The complex interplay between mitochondria, ROS and entire cellular metabolism. '''Antioxidants (Basel)''' 11:1995. - [[Kuznetsov 2022 Antioxidants (Basel) |»Bioblast link«]]
:S7a
 




Line 1,280: Line 1,282:
:::::: [[File:Diaz 2023 Front Mol Biosci CORRECTION.png|400px|link=Diaz 2023 Front Mol Biosci]]
:::::: [[File:Diaz 2023 Front Mol Biosci CORRECTION.png|400px|link=Diaz 2023 Front Mol Biosci]]
:::: '''7b.1''' Diaz EC, Adams SH, Weber JL, Cotter M, Børsheim E (2023) Elevated LDL-C, high blood pressure, and low peak V˙O2 associate with platelet mitochondria function in children-The Arkansas Active Kids Study. '''Front Mol Biosci''' 10:1136975. - [[Diaz 2023 Front Mol Biosci |»Bioblast link«]]
:::: '''7b.1''' Diaz EC, Adams SH, Weber JL, Cotter M, Børsheim E (2023) Elevated LDL-C, high blood pressure, and low peak V˙O2 associate with platelet mitochondria function in children-The Arkansas Active Kids Study. '''Front Mol Biosci''' 10:1136975. - [[Diaz 2023 Front Mol Biosci |»Bioblast link«]]
:S7b
 


:::::: [[File:Jezek 2023 Antioxid Redox Signal CORRECTION.png|400px|link=Jezek 2023 Antioxid Redox Signal]]
:::::: [[File:Jezek 2023 Antioxid Redox Signal CORRECTION.png|400px|link=Jezek 2023 Antioxid Redox Signal]]
:::: '''7b.2''' Ježek P, Jabůrek M, Holendová B, Engstová H, Dlasková A (2023) Mitochondrial cristae morphology reflecting metabolism, superoxide formation, redox homeostasis, and pathology. '''Antioxid Redox Signal'''. https://doi.org/10.1089/ars.2022.0173 - [[Jezek 2023 Antioxid Redox Signal |»Bioblast link«]]
:::: '''7b.2''' Ježek P, Jabůrek M, Holendová B, Engstová H, Dlasková A (2023) Mitochondrial cristae morphology reflecting metabolism, superoxide formation, redox homeostasis, and pathology. '''Antioxid Redox Signal'''. https://doi.org/10.1089/ars.2022.0173 - [[Jezek 2023 Antioxid Redox Signal |»Bioblast link«]]
:S7b
 




Line 1,291: Line 1,293:
:::::: [[File:Grasso 2020 Cell Stress CORRECTION.png|400px|link=Grasso 2020 Cell Stress]]
:::::: [[File:Grasso 2020 Cell Stress CORRECTION.png|400px|link=Grasso 2020 Cell Stress]]
:::: '''7c.1''' Grasso D, Zampieri LX, Capelôa T, Van de Velde JA, Sonveaux P (2020) Mitochondria in cancer. '''Cell Stress''' 4:114-46. - [[Grasso 2020 Cell Stress |»Bioblast link«]]
:::: '''7c.1''' Grasso D, Zampieri LX, Capelôa T, Van de Velde JA, Sonveaux P (2020) Mitochondria in cancer. '''Cell Stress''' 4:114-46. - [[Grasso 2020 Cell Stress |»Bioblast link«]]
:S7c
 


:::::: [[File:Middleton 2021 Therap Adv CORRECTION.png|300px|link=Middleton 2021 Therap Adv Gastroenterol]]
:::::: [[File:Middleton 2021 Therap Adv CORRECTION.png|300px|link=Middleton 2021 Therap Adv Gastroenterol]]
:::: '''7c.2''' Middleton P, Vergis N (2021) Mitochondrial dysfunction and liver disease: role, relevance, and potential for therapeutic modulation. '''Therap Adv Gastroenterol''' 14:17562848211031394. - [[Middleton 2021 Therap Adv Gastroenterol |»Bioblast link«]]
:::: '''7c.2''' Middleton P, Vergis N (2021) Mitochondrial dysfunction and liver disease: role, relevance, and potential for therapeutic modulation. '''Therap Adv Gastroenterol''' 14:17562848211031394. - [[Middleton 2021 Therap Adv Gastroenterol |»Bioblast link«]]
:S7c
 


:::::: [[File:Moudgil 2005 J Appl Physiol (1985) CORRECTION.png|400px|link=Moudgil 2005 J Appl Physiol (1985)]]
:::::: [[File:Moudgil 2005 J Appl Physiol (1985) CORRECTION.png|400px|link=Moudgil 2005 J Appl Physiol (1985)]]
:::: '''7c.3''' Moudgil R, Michelakis ED, Archer SL (2005) Hypoxic pulmonary vasoconstriction. '''J Appl Physiol (1985)''' 98:390-403. - [[Moudgil 2005 J Appl Physiol (1985) |»Bioblast link«]]
:::: '''7c.3''' Moudgil R, Michelakis ED, Archer SL (2005) Hypoxic pulmonary vasoconstriction. '''J Appl Physiol (1985)''' 98:390-403. - [[Moudgil 2005 J Appl Physiol (1985) |»Bioblast link«]]
:S7c
 




Line 1,305: Line 1,307:


:::::: [[File:Puntel 2013 Toxicol In Vitro CORRECTION.png|400px|link=Puntel 2013 Toxicol In Vitro]]
:::::: [[File:Puntel 2013 Toxicol In Vitro CORRECTION.png|400px|link=Puntel 2013 Toxicol In Vitro]]
:::: '''7d''' Puntel RL, Roos DH, Seeger RL, Rocha JB (2013) Mitochondrial electron transfer chain complexes inhibition by different organochalcogens. '''Toxicol In Vitro''' 27:59-70. - [[Puntel 2013 Toxicol In Vitro |»Bioblast link«]]
:::: '''7d.1''' Puntel RL, Roos DH, Seeger RL, Rocha JB (2013) Mitochondrial electron transfer chain complexes inhibition by different organochalcogens. '''Toxicol In Vitro''' 27:59-70. - [[Puntel 2013 Toxicol In Vitro |»Bioblast link«]]
:S7d
 




Line 1,312: Line 1,314:


:::::: [[File:Xing 2022 Atlantis Press CORRECTION.png|400px|link=Xing 2022 Atlantis Press]]
:::::: [[File:Xing 2022 Atlantis Press CORRECTION.png|400px|link=Xing 2022 Atlantis Press]]
:::: '''7e''' Xing Yunxie (2022) Is genome instability a significant cause of aging? A review. '''Atlantis Press'''. - [[Xing 2022 Atlantis Press |»Bioblast link«]]
:::: '''7e.1''' Xing Yunxie (2022) Is genome instability a significant cause of aging? A review. '''Atlantis Press'''. - [[Xing 2022 Atlantis Press |»Bioblast link«]]
:S7e
 




Line 1,319: Line 1,321:


:::::: [[File:Catania 2019 Orphanet J Rare Dis CORRECTION.png|400px|link=Catania 2019 Orphanet J Rare Dis]]
:::::: [[File:Catania 2019 Orphanet J Rare Dis CORRECTION.png|400px|link=Catania 2019 Orphanet J Rare Dis]]
:::: '''7f''' Catania A, Iuso A, Bouchereau J, Kremer LS, Paviolo M, Terrile C, Bénit P, Rasmusson AG, Schwarzmayr T, Tiranti V, Rustin P, Rak M, Prokisch H, Schiff M (2019) Arabidopsis thaliana alternative dehydrogenases: a potential therapy for mitochondrial complex I deficiency? Perspectives and pitfalls. '''Orphanet J Rare Dis''' 14:236. - [[Catania 2019 Orphanet J Rare Dis |»Bioblast link«]]
:::: '''7f.1''' Catania A, Iuso A, Bouchereau J, Kremer LS, Paviolo M, Terrile C, Bénit P, Rasmusson AG, Schwarzmayr T, Tiranti V, Rustin P, Rak M, Prokisch H, Schiff M (2019) Arabidopsis thaliana alternative dehydrogenases: a potential therapy for mitochondrial complex I deficiency? Perspectives and pitfalls. '''Orphanet J Rare Dis''' 14:236. - [[Catania 2019 Orphanet J Rare Dis |»Bioblast link«]]
:S7f
 




Line 1,329: Line 1,331:
:::::: [[File:Ahmad 2017 Springer, Cham CORRECTION.png|400px|link=Ahmad 2017 Springer, Cham]]
:::::: [[File:Ahmad 2017 Springer, Cham CORRECTION.png|400px|link=Ahmad 2017 Springer, Cham]]
:::: '''8a.1''' Ahmad G, Almasry M, Dhillon AS, Abuayyash MM, Kothandaraman N, Cakar Z (2017) Overview and sources of reactive oxygen species (ROS) in the reproductive system. In: Agarwal A, et al (eds) Oxidative stress in human reproduction. '''Springer, Cham'''. - [[Ahmad 2017 Springer, Cham |»Bioblast link«]]
:::: '''8a.1''' Ahmad G, Almasry M, Dhillon AS, Abuayyash MM, Kothandaraman N, Cakar Z (2017) Overview and sources of reactive oxygen species (ROS) in the reproductive system. In: Agarwal A, et al (eds) Oxidative stress in human reproduction. '''Springer, Cham'''. - [[Ahmad 2017 Springer, Cham |»Bioblast link«]]
:S8a
 


:::::: [[File:Irazabal 2020 Cells CORRECTION.png|400px|link=Irazabal 2020 Cells]]
:::::: [[File:Irazabal 2020 Cells CORRECTION.png|400px|link=Irazabal 2020 Cells]]
:::: '''8a.2''' Irazabal MV, Torres VE (2020) Reactive oxygen species and redox signaling in chronic kidney disease. '''Cells''' 9:1342. - [[Irazabal 2020 Cells |»Bioblast link«]]
:::: '''8a.2''' Irazabal MV, Torres VE (2020) Reactive oxygen species and redox signaling in chronic kidney disease. '''Cells''' 9:1342. - [[Irazabal 2020 Cells |»Bioblast link«]]
:S8a
 


:::::: [[File:LaMoia 2022 Proc Natl Acad Sci U S A CORRECTION.png|400px|link=LaMoia 2022 Proc Natl Acad Sci U S A]]
:::::: [[File:LaMoia 2022 Proc Natl Acad Sci U S A CORRECTION.png|400px|link=LaMoia 2022 Proc Natl Acad Sci U S A]]
:::: '''8a.3''' LaMoia TE, Butrico GM, Kalpage HA, Goedeke L, Hubbard BT, Vatner DF, Gaspar RC, Zhang XM, Cline GW, Nakahara K, Woo S, Shimada A, Hüttemann M, Shulman GI (2022) Metformin, phenformin, and galegine inhibit complex IV activity and reduce glycerol-derived gluconeogenesis. '''Proc Natl Acad Sci U S A''' 119:e2122287119. - [[LaMoia 2022 Proc Natl Acad Sci U S A |»Bioblast link«]]
:::: '''8a.3''' LaMoia TE, Butrico GM, Kalpage HA, Goedeke L, Hubbard BT, Vatner DF, Gaspar RC, Zhang XM, Cline GW, Nakahara K, Woo S, Shimada A, Hüttemann M, Shulman GI (2022) Metformin, phenformin, and galegine inhibit complex IV activity and reduce glycerol-derived gluconeogenesis. '''Proc Natl Acad Sci U S A''' 119:e2122287119. - [[LaMoia 2022 Proc Natl Acad Sci U S A |»Bioblast link«]]
:S8a
 


: '''FAD<sup>+</sup> ⟶ FADH<sub>2</sub>'''
: '''FAD<sup>+</sup> ⟶ FADH<sub>2</sub>'''
Line 1,343: Line 1,345:
:::::: [[File:Chinopoulos 2013 J Neurosci Res CORRECTION.png|400px|link=Chinopoulos 2013 J Neurosci Res]]
:::::: [[File:Chinopoulos 2013 J Neurosci Res CORRECTION.png|400px|link=Chinopoulos 2013 J Neurosci Res]]
:::: '''8b.1''' Chinopoulos C (2013) Which way does the citric acid cycle turn during hypoxia? The critical role of α-ketoglutarate dehydrogenase complex. '''J Neurosci Res''' 91:1030-43. - [[Chinopoulos 2013 J Neurosci Res |»Bioblast link«]]
:::: '''8b.1''' Chinopoulos C (2013) Which way does the citric acid cycle turn during hypoxia? The critical role of α-ketoglutarate dehydrogenase complex. '''J Neurosci Res''' 91:1030-43. - [[Chinopoulos 2013 J Neurosci Res |»Bioblast link«]]
:S8b
 




Line 1,349: Line 1,351:


:::::: [[File:Andrieux 2021 Int J Mol Sci CORRECTION.png|400px|link=Andrieux 2021 Int J Mol Sci]]
:::::: [[File:Andrieux 2021 Int J Mol Sci CORRECTION.png|400px|link=Andrieux 2021 Int J Mol Sci]]
:::: '''8c''' Andrieux P, Chevillard C, Cunha-Neto E, Nunes JPS (2021) Mitochondria as a cellular hub in infection and inflammation. '''Int J Mol Sci''' 22:11338. - [[Andrieux 2021 Int J Mol Sci |»Bioblast link«]]
:::: '''8c.1''' Andrieux P, Chevillard C, Cunha-Neto E, Nunes JPS (2021) Mitochondria as a cellular hub in infection and inflammation. '''Int J Mol Sci''' 22:11338. - [[Andrieux 2021 Int J Mol Sci |»Bioblast link«]]
:S8c
 




Line 1,356: Line 1,358:


:::::: [[File:Huss 2005 J Clin Invest CORRECTION.png|400px|link=Huss 2005 J Clin Invest]]
:::::: [[File:Huss 2005 J Clin Invest CORRECTION.png|400px|link=Huss 2005 J Clin Invest]]
:::: '''8d''' Huss JM, Kelly DP (2005) Mitochondrial energy metabolism in heart failure: a question of balance. '''J Clin Invest''' 115:547-55. - [[Huss 2005 J Clin Invest |»Bioblast link«]]
:::: '''8d.1''' Huss JM, Kelly DP (2005) Mitochondrial energy metabolism in heart failure: a question of balance. '''J Clin Invest''' 115:547-55. - [[Huss 2005 J Clin Invest |»Bioblast link«]]
:S8d
 




Line 1,363: Line 1,365:


:::::: [[File:Bugarski 2018 Am J Physiol Renal Physiol CORRECTION.png|400px|link=Bugarski 2018 Am J Physiol Renal Physiol]]
:::::: [[File:Bugarski 2018 Am J Physiol Renal Physiol CORRECTION.png|400px|link=Bugarski 2018 Am J Physiol Renal Physiol]]
:::: '''8e''' Bugarski M, Martins JR, Haenni D, Hall AM (2018) Multiphoton imaging reveals axial differences in metabolic autofluorescence signals along the kidney proximal tubule. '''Am J Physiol Renal Physiol''' 315:F1613-25. - [[Bugarski 2018 Am J Physiol Renal Physiol |»Bioblast link«]]
:::: '''8e.1''' Bugarski M, Martins JR, Haenni D, Hall AM (2018) Multiphoton imaging reveals axial differences in metabolic autofluorescence signals along the kidney proximal tubule. '''Am J Physiol Renal Physiol''' 315:F1613-25. - [[Bugarski 2018 Am J Physiol Renal Physiol |»Bioblast link«]]
:S8e
 


== Supplement 7. FADH<sub>2</sub> or FADH as substrate of CII in websites ==
== Supplement: FADH<sub>2</sub> or FADH as substrate of CII in websites ==


:::: '''Figure S7'''. Complex II ambiguities in graphical representations on FADH<sub>2</sub> as a substrate of Complex II in the canonical forward electron transfer. FADH → FAD+H ('''g'''), FADH<sub>2</sub> → FAD+2H<sup>+</sup> ('''a’''', '''c''', '''h-n'''), and FADH<sub>2</sub> → FAD ('''a''', '''b''', '''d-f''', '''o-θ''') should be corrected to FADH<sub>2</sub> → FAD (Eq. 3b). NADH → NAD<sup>+</sup> is frequently written in graphs without showing the H<sup>+</sup> on the left side of the arrow, except for ('''p-r'''). NADH → NAD<sup>+</sup>+H<sup>+</sup> ('''a-g''', '''m'''), NADH → NAD<sup>+</sup>+2H<sup>+</sup> ('''h-l'''), NADH+H<sup>+</sup> → NAD<sup>+</sup>+2H<sup>+</sup> ('''j''', '''k'''), and NADH → NAD ('''ι''') should be corrected to NADH+H<sup>+</sup> → NAD<sup>+</sup> (Eq. 3a). (Retrieved 2023-03-21 to 2023-05-04).
:::: Complex II ambiguities in graphical representations on FADH<sub>2</sub> as a substrate of Complex II in the canonical forward electron transfer. FADH → FAD+H ('''g'''), FADH<sub>2</sub> → FAD+2H<sup>+</sup> ('''a’''', '''c''', '''h-n'''), and FADH<sub>2</sub> → FAD ('''a''', '''b''', '''d-f''', '''o-θ''') should be corrected to FADH<sub>2</sub> → FAD (Eq. 3b). NADH → NAD<sup>+</sup> is frequently written in graphs without showing the H<sup>+</sup> on the left side of the arrow, except for ('''p-r'''). NADH → NAD<sup>+</sup>+H<sup>+</sup> ('''a-g''', '''m'''), NADH → NAD<sup>+</sup>+2H<sup>+</sup> ('''h-l'''), NADH+H<sup>+</sup> → NAD<sup>+</sup>+2H<sup>+</sup> ('''j''', '''k'''), and NADH → NAD ('''ι''') should be corrected to NADH+H<sup>+</sup> → NAD<sup>+</sup> (Eq. 3a). (Retrieved 2023-03-21 to 2023-05-04).


:::::: [[File:OpenStax Biology.png|400px]]
:::::: [[File:OpenStax Biology.png|400px]]
Line 1,550: Line 1,552:


:::::: [[File:Balasubramaniam 2020 J Transl Genet Genom CORRECTION.png|400px|link=Balasubramaniam 2020 J Transl Genet Genom]]
:::::: [[File:Balasubramaniam 2020 J Transl Genet Genom CORRECTION.png|400px|link=Balasubramaniam 2020 J Transl Genet Genom]]
:::: '''xx''' Balasubramaniam S, Yaplito-Lee J (2020) Riboflavin metabolism: role in mitochondrial function. '''J Transl Genet Genom''' 4:285-306. - [[Balasubramaniam 2020 J Transl Genet Genom |»Bioblast link«]]
:::: '''1.4''' Balasubramaniam S, Yaplito-Lee J (2020) Riboflavin metabolism: role in mitochondrial function. '''J Transl Genet Genom''' 4:285-306. - [[Balasubramaniam 2020 J Transl Genet Genom |»Bioblast link«]]
<br>
<br>


Line 1,677: Line 1,679:


:::::: [[File:Hashimoto 2006 Am J Physiol Endocrinol Metab CORRECTION.png|400px|link=Hashimoto 2006 Am J Physiol Endocrinol Metab]]
:::::: [[File:Hashimoto 2006 Am J Physiol Endocrinol Metab CORRECTION.png|400px|link=Hashimoto 2006 Am J Physiol Endocrinol Metab]]
:::: '''##''' Hashimoto T, Hussien R, Brooks GA (2006) Colocalization of MCT1, CD147, and LDH in mitochondrial inner membrane of L6 muscle cells: evidence of a mitochondrial lactate oxidation complex. '''Am J Physiol Endocrinol Metab''' 290:E1237-44. - [[Hashimoto 2006 Am J Physiol Endocrinol Metab |»Bioblast link«]]
:::: '''xx''' Hashimoto T, Hussien R, Brooks GA (2006) Colocalization of MCT1, CD147, and LDH in mitochondrial inner membrane of L6 muscle cells: evidence of a mitochondrial lactate oxidation complex. '''Am J Physiol Endocrinol Metab''' 290:E1237-44. - [[Hashimoto 2006 Am J Physiol Endocrinol Metab |»Bioblast link«]]
<br>
<br>


Line 1,685: Line 1,687:


:::::: [[File:Lautrup 2019 Cell Metab CORRECTION.png|400px|link=Lautrup 2019 Cell Metab]]
:::::: [[File:Lautrup 2019 Cell Metab CORRECTION.png|400px|link=Lautrup 2019 Cell Metab]]
:::: '''##''' Lautrup S, Sinclair DA, Mattson MP, Fang EF (2019) NAD<sup>+</sup> in brain aging and neurodegenerative disorders. '''Cell Metab''' 30:630-55. - [[Lautrup 2019 Cell Metab |»Bioblast link«]]
:::: '''xx''' Lautrup S, Sinclair DA, Mattson MP, Fang EF (2019) NAD<sup>+</sup> in brain aging and neurodegenerative disorders. '''Cell Metab''' 30:630-55. - [[Lautrup 2019 Cell Metab |»Bioblast link«]]
<br>
<br>


Line 1,693: Line 1,695:


:::::: [[File:Xiao 2018 Antioxid Redox Signal CORRECTION.png|400px|link=Xiao 2018 Antioxid Redox Signal]]
:::::: [[File:Xiao 2018 Antioxid Redox Signal CORRECTION.png|400px|link=Xiao 2018 Antioxid Redox Signal]]
:::: '''##''' Xiao W, Wang RS, Handy DE, Loscalzo J (2018) NAD(H) and NADP(H) redox couples and cellular energy metabolism. '''Antioxid Redox Signal''' 28:251–72. - [[Xiao 2018 Antioxid Redox Signal |»Bioblast link«]]
:::: '''xx''' Xiao W, Wang RS, Handy DE, Loscalzo J (2018) NAD(H) and NADP(H) redox couples and cellular energy metabolism. '''Antioxid Redox Signal''' 28:251–72. - [[Xiao 2018 Antioxid Redox Signal |»Bioblast link«]]
<br>
<br>


Line 1,705: Line 1,707:




== Supplement 9. CII as a H<sup>+</sup> pump ==
== CII as a H<sup>+</sup> pump ==


:::::: [[File:Cronshaw 2019 Photobiomodul Photomed Laser Surg CORRECTION.png|400px|link=Cronshaw 2019 Photobiomodul Photomed Laser Surg]]
:::::: [[File:Cronshaw 2019 Photobiomodul Photomed Laser Surg CORRECTION.png|400px|link=Cronshaw 2019 Photobiomodul Photomed Laser Surg]]
:::: '''a''' Cronshaw M, Parker S, Arany P (2019) Feeling the heat: evolutionary and microbial basis for the analgesic mechanisms of photobiomodulation therapy. '''Photobiomodul Photomed Laser Surg''' 37:517-26. - [[Cronshaw 2019 Photobiomodul Photomed Laser Surg |»Bioblast link«]]
:::: '''xx''' Cronshaw M, Parker S, Arany P (2019) Feeling the heat: evolutionary and microbial basis for the analgesic mechanisms of photobiomodulation therapy. '''Photobiomodul Photomed Laser Surg''' 37:517-26. - [[Cronshaw 2019 Photobiomodul Photomed Laser Surg |»Bioblast link«]]
<br>
<br>


Line 1,716: Line 1,718:


:::::: [[File:Jian 2020 Cell Metab CORRECTION.png|400px|link=Jian 2020 Cell Metab]]
:::::: [[File:Jian 2020 Cell Metab CORRECTION.png|400px|link=Jian 2020 Cell Metab]]
:::: '''b''' Jian C, Fu J, Cheng X, Shen LJ, Ji YX, Wang X, Pan S, Tian H, Tian S, Liao R, Song K, Wang HP, Zhang X, Wang Y, Huang Z, She ZG, Zhang XJ, Zhu L, Li H (2020) Low-dose sorafenib acts as a mitochondrial uncoupler and ameliorates nonalcoholic steatohepatitis. '''Cell Metab''' 31:892-908. - [[Jian 2020 Cell Metab |»Bioblast link«]]   
:::: '''xx''' Jian C, Fu J, Cheng X, Shen LJ, Ji YX, Wang X, Pan S, Tian H, Tian S, Liao R, Song K, Wang HP, Zhang X, Wang Y, Huang Z, She ZG, Zhang XJ, Zhu L, Li H (2020) Low-dose sorafenib acts as a mitochondrial uncoupler and ameliorates nonalcoholic steatohepatitis. '''Cell Metab''' 31:892-908. - [[Jian 2020 Cell Metab |»Bioblast link«]]   
:::::: While CI functions as a proton pump, CII does not. Depicting CII as a proton pump would be analogous to falsely portraying FADH<sub>2</sub> as the substrate of CII, as if it were a copy of CI, which functions as a proton pump with NADH as its substrate.
:::::: While CI functions as a proton pump, CII does not. Depicting CII as a proton pump would be analogous to falsely portraying FADH<sub>2</sub> as the substrate of CII, as if it were a copy of CI, which functions as a proton pump with NADH as its substrate.
<br>
<br>


:::::: [[File:Shirakawa 2023 Sci Rep CORRECTION.png|400px|link=Shirakawa 2023 Sci Rep]]
:::::: [[File:Shirakawa 2023 Sci Rep CORRECTION.png|400px|link=Shirakawa 2023 Sci Rep]]
:::: '''c''' Shirakawa R, Nakajima T, Yoshimura A, Kawahara Y, Orito C, Yamane M, Handa H, Takada S, Furihata T, Fukushima A, Ishimori N, Nakagawa M, Yokota I, Sabe H, Hashino S, Kinugawa S, Yokota T (2023) Enhanced mitochondrial oxidative metabolism in peripheral blood mononuclear cells is associated with fatty liver in obese young adults. '''Sci Rep''' 13:5203. - [[Shirakawa 2023 Sci Rep |»Bioblast link«]]
:::: '''xx''' Shirakawa R, Nakajima T, Yoshimura A, Kawahara Y, Orito C, Yamane M, Handa H, Takada S, Furihata T, Fukushima A, Ishimori N, Nakagawa M, Yokota I, Sabe H, Hashino S, Kinugawa S, Yokota T (2023) Enhanced mitochondrial oxidative metabolism in peripheral blood mononuclear cells is associated with fatty liver in obese young adults. '''Sci Rep''' 13:5203. - [[Shirakawa 2023 Sci Rep |»Bioblast link«]]
:::::: While CI functions as a proton pump, CII does not. Depicting CII as a proton pump would be analogous to falsely portraying FADH<sub>2</sub> as the substrate of CII, as if it were a copy of CI, which functions as a proton pump with NADH as its substrate.
:::::: While CI functions as a proton pump, CII does not. Depicting CII as a proton pump would be analogous to falsely portraying FADH<sub>2</sub> as the substrate of CII, as if it were a copy of CI, which functions as a proton pump with NADH as its substrate.
<br>
<br>


:::::: [[File:Xing 2022 Atlantis Press CORRECTION.png|400px|link=Xing 2022 Atlantis Press]]
:::::: [[File:Xing 2022 Atlantis Press CORRECTION.png|400px|link=Xing 2022 Atlantis Press]]
:::: '''i''' Xing Yunxie (2022) Is genome instability a significant cause of aging? A review. '''Atlantis Press'''. - [[Xing 2022 Atlantis Press |»Bioblast link«]]
:::: '''xx''' Xing Yunxie (2022) Is genome instability a significant cause of aging? A review. '''Atlantis Press'''. - [[Xing 2022 Atlantis Press |»Bioblast link«]]
:S7.5
<br>
 


:::::: [[File:Expii-Gabi Slizewska CORRECTION.png|400px]]
:::::: [[File:Expii-Gabi Slizewska CORRECTION.png|400px]]
:::: '''d''': [https://www.expii.com/t/electron-transport-chain-summary-diagrams-10139 expii expii - Image source: By Gabi Slizewska]: ‘FADH<sub>2</sub> from glycolysis and Krebs cycle is oxidized to FAD by Complex II. It also releases H<sup>+</sup> ions into the intermembrane space and passes off electrons’ (retrieved 2023-05-04).
:::: '''xx''': [https://www.expii.com/t/electron-transport-chain-summary-diagrams-10139 expii expii - Image source: By Gabi Slizewska]: ‘FADH<sub>2</sub> from glycolysis and Krebs cycle is oxidized to FAD by Complex II. It also releases H<sup>+</sup> ions into the intermembrane space and passes off electrons’ (retrieved 2023-05-04).


:::::: [[File:BioNinja 1 CORRECTION.png|400px]]
:::::: [[File:BioNinja 1 CORRECTION.png|400px]]
:::::: [[File:BioNinja 2 CORRECTION.png|400px]]
:::::: [[File:BioNinja 2 CORRECTION.png|400px]]
:::: '''e''','''f''': [https://ib.bioninja.com.au/higher-level/topic-8-metabolism-cell/untitled/electron-transport-chain.html BioNinja] (retrieved 2023-05-04).
:::: '''xx''': [https://ib.bioninja.com.au/higher-level/topic-8-metabolism-cell/untitled/electron-transport-chain.html BioNinja] (retrieved 2023-05-04).


== Beyond preprint ==
== Beyond preprint ==


:::::: [[File:Grandoch 2019 Nat Metab CORRECTION.png|300px|link=Grandoch 2019 Nat Metab]]
:::::: [[File:Grandoch 2019 Nat Metab CORRECTION.png|300px|link=Grandoch 2019 Nat Metab]]
:::: '''1''' Grandoch M, Flögel U, Virtue S, Maier JK, Jelenik T, Kohlmorgen C, Feldmann K, Ostendorf Y, Castañeda TR, Zhou Z, Yamaguchi Y, Nascimento EBM, Sunkari VG, Goy C, Kinzig M, Sörgel F, Bollyky PL, Schrauwen P, Al-Hasani H, Roden M, Keipert S, Vidal-Puig A, Jastroch M5, Haendeler J, Fischer JW (2019) 4-Methylumbelliferone improves the thermogenic capacity of brown adipose tissue. '''Nat Metab''' 1:546-59. - [[Grandoch 2019 Nat Metab |»Bioblast link«]]
:::: '''xx''' Grandoch M, Flögel U, Virtue S, Maier JK, Jelenik T, Kohlmorgen C, Feldmann K, Ostendorf Y, Castañeda TR, Zhou Z, Yamaguchi Y, Nascimento EBM, Sunkari VG, Goy C, Kinzig M, Sörgel F, Bollyky PL, Schrauwen P, Al-Hasani H, Roden M, Keipert S, Vidal-Puig A, Jastroch M5, Haendeler J, Fischer JW (2019) 4-Methylumbelliferone improves the thermogenic capacity of brown adipose tissue. '''Nat Metab''' 1:546-59. - [[Grandoch 2019 Nat Metab |»Bioblast link«]]
:::::: '''NADH''' is shown as the '''''product''''' of the reaction catalyzed by CI in respiration. This error is rare in the literature, but comparable to the error frequenty encountered when '''FADH<sub>2</sub>''' is shown as the '''''substrate''''' of CII.
:::::: '''NADH''' is shown as the '''''product''''' of the reaction catalyzed by CI in respiration. This error is rare in the literature, but comparable to the error frequenty encountered when '''FADH<sub>2</sub>''' is shown as the '''''substrate''''' of CII.
<br>
<br>


:::::: [[File:Lancaster 2002 Biochim Biophys Acta.png|300px|link=Lancaster 2002 Biochim Biophys Acta]] [[File:Lancaster 2001 FEBS Lett CORRECTION.png|300px|link=Lancaster 2001 FEBS Lett]]
:::::: [[File:Lancaster 2002 Biochim Biophys Acta.png|300px|link=Lancaster 2002 Biochim Biophys Acta]] [[File:Lancaster 2001 FEBS Lett CORRECTION.png|300px|link=Lancaster 2001 FEBS Lett]]
:::: '''2''' Lancaster CR (2002) Succinate:quinone oxidoreductases: an overview. '''Biochim Biophys Acta''' 1553:1-6. - [[Lancaster 2002 Biochim Biophys Acta |»Bioblast link«]]
:::: '''xx''' Lancaster CR (2002) Succinate:quinone oxidoreductases: an overview. '''Biochim Biophys Acta''' 1553:1-6. - [[Lancaster 2002 Biochim Biophys Acta |»Bioblast link«]]
:::::: fumarate + 2H<sup>+</sup> shown besides NADH + H<sup>+</sup> is ambiguous.
:::::: fumarate + 2H<sup>+</sup> shown besides NADH + H<sup>+</sup> is ambiguous.
:::: '''3''' Lancaster CR (2001) Succinate:quinone oxidoreductases--what can we learn from Wolinella succinogenes quinol:fumarate reductase?. '''FEBS Lett''' 504:133-41. - [[Lancaster 2001 FEBS Lett |»Bioblast link«]]
:::: '''xx''' Lancaster CR (2001) Succinate:quinone oxidoreductases--what can we learn from Wolinella succinogenes quinol:fumarate reductase?. '''FEBS Lett''' 504:133-41. - [[Lancaster 2001 FEBS Lett |»Bioblast link«]]
<br>
<br>



Revision as of 02:42, 20 November 2023

Publications in the MiPMap
Gnaiger E (2023) Complex II ambiguities ― FADH2 in the electron transfer system. MitoFit Preprints 2023.3.v6. https://doi.org/10.26124/mitofit:2023-0003.v6

» MitoFit Preprints 2023.3.v6.

MitoFit pdf

Complex II ambiguities ― FADH2 in the electron transfer system

Gnaiger Erich (2023) MitoFit Prep

Abstract:

CII-ambiguities Graphical abstract.png
Version 6 (v6) 2023-06-21 10.26124/mitofit:2023-0003.v6
Version 5 (v5) 2023-05-31
Version 4 (v4) 2023-05-12
Version 3 (v3) 2023-05-04
Version 2 (v2) 2023-04-04
Version 1 (v1) 2023-03-24 - »Link to all versions«

The prevailing notion that reduced cofactors NADH and FADH2 transfer electrons from the tricarboxylic acid cycle to the mitochondrial electron transfer system creates ambiguities regarding respiratory Complex II (CII). The succinate dehydrogenase subunit SDHA of CII oxidizes succinate and reduces the covalently bound prosthetic group FAD to FADH2 in the canonical forward tricarboxylic acid cycle. However, several graphical representations of the electron transfer system depict FADH2 in the mitochondrial matrix as a substrate to be oxidized by CII. This leads to the false conclusion that FADH2 from the β-oxidation cycle in fatty acid oxidation feeds electrons into CII. In reality, dehydrogenases of fatty acid oxidation channel electrons to the coenzyme Q-junction but not through CII. The ambiguities surrounding Complex II in the literature and educational resources call for quality control, to secure scientific standards in current communications of bioenergetics, and ultimately support adequate clinical applications. This review aims to raise awareness of the inherent ambiguity crisis, complementing efforts to address the well-acknowledged issues of credibility and reproducibility.
Keywords: coenzyme Q junction, Q-junction; Complex II, CII; electron transfer system, ETS; fatty acid oxidation, FAO; flavin adenine dinucleotide, FAD/FADH2; nicotinamide adenine dinucleotide, NAD+/NADH; succinate dehydrogenase, SDH; tricarboxylic acid cycle, TCA

O2k-Network Lab: AT Innsbruck Oroboros

ORCID: ORCID.png Gnaiger Erich, Oroboros Instruments, Innsbruck, Austria

» Links: Ambiguity crisis, Complex II ambiguities, Complex I and hydrogen ion ambiguities in the electron transfer system

N-S FADH2-FMNH2.png

Figure 1. Complex II (SDH) bridges H+-linked electron transfer from the TCA cycle (matrix-ETS) to the electron transfer system (membrane-ETS) of the mt-inner membrane (mtIM). (a) NADH+H+ and (b) succinate are substrates of 2{H++e-} transfer to CI and CII, respectively, with prosthetic groups FMN and FAD as the corresponding electron acceptors. (c) Symbolic representation of ETS pathway architecture. Electron flow converges at the N-junction (NAD+ → NADH+H+). Electron flow from NADH and succinate S converges through CI and CII at the Q-junction. CIII passes electrons to cytochrome c and in CIV to molecular O2, 2{H++e-}+0.5 O2 ⇢ H2O. (d) NADH+H+ and NAD+ cycle between matrix-dehydrogenases and CI, whereas FAD and FADH2 cycle permanently bound within the same enzyme CII. Succinate and fumarate indicate the chemical entities irrespective of ionization, but charges are shown in NADH, NAD+, and H+. Joint pairs of half-circular arrows distinguish electron transfer 2{H++e­-} to CI and CII from vectorial H+ translocation across the mtIM (H+neg → H+pos). CI and CIII pump hydrogen ions from the negatively (neg) to the positively charged compartment (pos). (e) Iconic representation of SDH subunits. SDHA catalyzes the oxidation succinate → fumarate + 2{H++e-} and reduction FAD + 2{H++e-} → FADH2 in the soluble domain of CII. The iron–sulfur protein SDHB transfers electrons through Fe-S clusters to the mtIM domain where ubiquinone UQ is reduced to ubiquinol UQH2 in SDHC and SDHD.

Acknowledgements: I thank Luiza H.D. Cardoso, Sabine Schmitt, and Donnelly Chris for stimulating discussions, and Paolo Cocco for expert help on the graphical abstract and Figures 1d and e. The constructive comments of an anonymous reviewer (J Biol Chem) are explicitly acknowledged. Contribution to the European Union’s Horizon 2020 research and innovation program Grant 857394 (FAT4BRAIN).

Supplement 1. Footnotes on terminology

‘The dissociable, low-relative-molecular-mass active group of an enzyme which transfers chemical groups, hydrogen, or electrons. A coenzyme binds with its associated protein (apoenzyme) to form the active enzyme (holoenzyme) (Burtis, Geary 1994). ‘A low-molecular-weight, non-protein organic compound participating in enzymatic reactions as dissociable acceptor or donor of chemical groups or electrons’ - https://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:23354 (CHEBI:23354, retrieved 2023-06-21). A coenzyme or cosubstrate is a cofactor that is attached loosely and transiently to an enzyme. NADH is listed as a coenzyme, which should be regarded as a substrate of pyridine-linked dehydrogenases (Lehninger 1975).
A cofactor is 'an organic molecule or ion (usually a metal ion) that is required by an enzyme for its activity. It may be attached either loosely (coenzyme) or tightly (prosthetic group)' - https://www.ebi.ac.uk/chebi/searchId.do?chebiId=23357 (CHEBI:23357, retrieved 2023-06-21).
The convergent architecture of the electron transfer system is emphasized in contrast to linear electron transfer chains ETCs within segments of the ETS.
  • Electron transfer:
A distinction is necessary between electron transfer in redox reactions and electron transport (translocation) in the diffusion of charged ionic species within or between cellular compartments. The symbol 2{H++e} is introduced to indicate H+-linked electron transfer of two hydrogen ions and two electrons in a redox reaction.
  • Gibbs force:
In contrast to the extensive quantity Gibbs energy [J], Gibbs force [J·mol-1] is an intensive quantity expressed as the partial derivative of Gibbs energy [J] per advancement of a reaction [mol] (Gnaiger 1993; 2020).
  • H+-linked electron transfer:
The term H+-coupled electron transfer (Hsu et al 2022) is replaced by H+-linked electron transfer, to avoid confusion with coupled H+ translocation.
  • Matrix-ETS:
Electron transfer and corresponding OXPHOS capacities are classically studied in mitochondrial preparations as oxygen consumption supported by various fuel substrates undergoing partial oxidation in the mt-matrix, such as pyruvate, malate, succinate, and others. Therefore, the matrix component of ETS (matrix-ETS) is distinguished from the ETS bound to the mt-inner membrane (membrane-ETS; Gnaiger et al 2020).
  • Membrane-ETS:
Electron transfer is frequently considered as the segment of redox reactions linked to the mtIM. However, the membrane-ETS is only part of the total ETS, which includes the upstream matrix-ETS.
  • Misinformation:
Misinformation is the mistaken sharing of the same content (Wardle 2023).
A prosthetic group is a cofactor that is ‘a tightly bound, specific nonpolypeptide unit in a protein determining and involved in its biological activity’ - https://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:26348 (CHEBI:26348, retrieved 2023-06-21). A prosthetic group is attached permanently and tightly or even covalently to an enzyme and that is regenerated in each enzymatic turnover. FAD is the prosthetic group of flavin-linked dehydrogenases, covalently bound to CII.
A substrate in a chemical reaction has a negative stoichiometric number since it is consumed, whereas a product has a positive stoichiometric number since it is produced. The general definition of a substrate in an enzyme-catalized reaction relies on the definition of the chemical reaction, without restriction to the nature of the substrate, i.e. independent of the substrate being a chemical entity in solution or a loosely bound cosubstrate (coenzyme) or even a tightly bound prosthetic group. The latter may be explicitly distinguished as a bound (internal) substrate from a free (external) substrate. Even different substrate pools may coexist (CoQ).
  • 2{H++e-}
In H+-linked two-electron transfer, 2H+ + 2e-, ‘the terms reducing equivalents or electron equivalents are used to refer to electrons and/or hydrogen atoms participating in oxidoreductions’ (Lehninger 1975). The symbol 2[H] is frequently used to distinguish reducing equivalents in the transfer from hydrogen donors to hydrogen acceptors from aqueous H+. Acid-base reactions obtain equilibrium fast without catalyst, whereas the slow oxidation-reduction reactions require an enzyme to proceed. However, 2[H] does not explicitly express that it applies to both electron and hydrogen ion transfer. Brackets are avoided to exclude the confusion with amount-of-substance concentrations frequently indicated by brackets. H+-linked two-electron transfer 2{H++e-} is distinguished from single-electron transfer {H+}+{e-}.


Beyond version 6

Last update: 2023-11-20

SDH: FAD ⟶ FADH2; CII: FADH2 ⟶ FAD

Alzaid 2015 Springer CORRECTION.png
1.1 Alzaid F, Patel VB, Preedy VR (2015) Biomarkers of oxidative stress in blood. In: Preedy V, Patel V (eds) General methods in biomarker research and their applications. Biomarkers in disease: methods, discoveries and applications. Springer, Dordrecht. - »Bioblast link«


Arnold, Finley 2022 CORRECTION.png
1.2 Arnold PK, Finley LWS (2023) Regulation and function of the mammalian tricarboxylic acid cycle. J Biol Chem 299:102838. - »Bioblast link«


Aye 2022 Am J Obstet Gynecol CORRECTION.png
1.3 Aye ILMH, Aiken CE, Charnock-Jones DS, Smith GCS (2022) Placental energy metabolism in health and disease-significance of development and implications for preeclampsia. Am J Obstet Gynecol 226:S928-44. - »Bioblast link«


Balasubramaniam 2020 J Transl Genet Genom CORRECTION.png
1.4 Balasubramaniam S, Yaplito-Lee J (2020) Riboflavin metabolism: role in mitochondrial function. J Transl Genet Genom 4:285-306. - »Bioblast link«


Begriche 2011 J Hepatol CORRECTION.png
1.5 Begriche K, Massart J, Robin MA, Borgne-Sanchez A, Fromenty B (2011) Drug-induced toxicity on mitochondria and lipid metabolism: mechanistic diversity and deleterious consequences for the liver. J Hepatol 54:773-94. - »Bioblast link«


Begum 2023 WIREs Mech Dis CORRECTION.png
1.6 Begum HM, Shen K (2023) Intracellular and microenvironmental regulation of mitochondrial membrane potential in cancer cells. WIREs Mech Dis 15:e1595. - »Bioblast link«


Beier 2015 FASEB J CORRECTION.png
1.7 Beier UH, Angelin A, Akimova T, Wang L, Liu Y, Xiao H, Koike MA, Hancock SA, Bhatti TR, Han R, Jiao J, Veasey SC, Sims CA, Baur JA, Wallace DC, Hancock WW (2015) Essential role of mitochondrial energy metabolism in Foxp3⁺ T-regulatory cell function and allograft survival. FASEB J 29:2315-26. - »Bioblast link«


Bhargava 2017 Nat Rev Nephrol CORRECTION.png
1.8 Bhargava P, Schnellmann RG (2017) Mitochondrial energetics in the kidney. Nat Rev Nephrol 13:629-46. - »Bioblast link«


Boukalova 2020 Biochim Biophys Acta Mol Basis Dis CORRECTION.png
1.9 Boukalova S, Hubackova S, Milosevic M, Ezrova Z, Neuzil J, Rohlena J (2020) Dihydroorotate dehydrogenase in oxidative phosphorylation and cancer. Biochim Biophys Acta Mol Basis Dis 1866:165759. - »Bioblast link«


Camara 2011 Front Physiol CORRECTION.png
1.10 Camara AK, Bienengraeber M, Stowe DF (2011) Mitochondrial approaches to protect against cardiac ischemia and reperfusion injury. Front Physiol 2:13. - »Bioblast link«


Chakrabarty 2021 Cell Stem Cell 1 CORRECTION.png
1.11 Chakrabarty RP, Chandel NS (2021) Mitochondria as signaling organelles control mammalian stem cell fate. Cell Stem Cell 28:394-408. - »Bioblast link«


Chandel 2021 Cold Spring Harb Perspect Biol CORRECTION.png
1.12, 1.13 Chandel NS (2021) Mitochondria. Cold Spring Harb Perspect Biol 13:a040543. - »Bioblast link«


Cogliati 2021 Biochem Soc Trans CORRECTION.png
1.14 Cogliati S, Cabrera-Alarcón JL, Enriquez JA (2021) Regulation and functional role of the electron transport chain supercomplexes. Biochem Soc Trans 49:2655-68. - »Bioblast link«


De Beauchamp 2022 Leukemia CORRECTION.png
1.15 de Beauchamp L, Himonas E, Helgason GV (2022) Mitochondrial metabolism as a potential therapeutic target in myeloid leukaemia. Leukemia 36:1-12. - »Bioblast link«


DeBerardinis, Chandel 2016 CORRECTION.png
1.16 DeBerardinis RJ, Chandel NS (2016) Fundamentals of cancer metabolism. Sci Adv 2:e1600200. - »Bioblast link«


Du 2023 bioRxiv CORRECTION.png
1.17 Du J, Sudlow LC, Shahverdi K, Zhou H, Michie M, Schindler TH, Mitchell JD, Mollah S, Berezin MY (2023) Oxaliplatin-induced cardiotoxicity in mice is connected to the changes in energy metabolism in the heart tissue. bioRxiv 2023.05.24.542198. - »Bioblast link«


Esparza-Molto 2020 Antioxid Redox Signal CORRECTION.png
1.18 Esparza-Moltó PB, Cuezva JM (2020) Reprogramming oxidative phosphorylation in cancer: a role for RNA-binding proteins. Antioxid Redox Signal 33:927-45. - »Bioblast link«


Ezeani 2020 Front Biosci (Schol Ed) CORRECTION.png
1.19 Ezeani M (2020) Aberrant cardiac metabolism leads to cardiac arrhythmia. Front Biosci (Schol Ed) 12:200-21. - »Bioblast link«


Fahlbusch 2022 Int J Mol Sci CORRECTION.png
1.20 Fahlbusch P, Nikolic A, Hartwig S, Jacob S, Kettel U, Köllmer C, Al-Hasani H, Lehr S, Müller-Wieland D, Knebel B, Kotzka J (2022) Adaptation of oxidative phosphorylation machinery compensates for hepatic lipotoxicity in early stages of MAFLD. Int J Mol Sci 23:6873. - »Bioblast link«


Fink 2018 J Biol Chem CORRECTION.png
1.21 Fink BD, Bai F, Yu L, Sheldon RD, Sharma A, Taylor EB, Sivitz WI (2018) Oxaloacetic acid mediates ADP-dependent inhibition of mitochondrial complex II-driven respiration. J Biol Chem 293:19932-41. - »Bioblast link«


Fromenty 2023 J Hepatol CORRECTION.png
1.22 Fromenty B, Roden M (2023) Mitochondrial alterations in fatty liver diseases. J Hepatol 78:415-29. - »Bioblast link«


Gammon 2019 Cells CORRECTION.png
1.23 Gammon ST, Pisaneschi F, Bandi ML, Smith MG, Sun Y, Rao Y, Muller F, Wong F, De Groot J, Ackroyd J, Mawlawi O, Davies MA, Gopal YNV, Di Francesco ME, Marszalek JR, Dewhirst M, Piwnica-Worms D (2019) Mechanism-specific pharmacodynamics of a novel Complex-I inhibitor quantified by imaging reversal of consumptive hypoxia with [18F]FAZA PET in vivo. Cells 8:1487. - »Bioblast link«


Goetzman 2011 Prog Mol Biol Transl Sci CORRECTION.png
1.24 Goetzman ES (2011) Modeling disorders of fatty acid metabolism in the mouse. Prog Mol Biol Transl Sci 100:389-417. - »Bioblast link«


Hamanaka 2013 Cell Logist CORRECTION.png
1.25 Hamanaka RB, Chandel NS (2013) Mitochondrial metabolism as a regulator of keratinocyte differentiation. Cell Logist 3:e25456. - »Bioblast link«


Han 2021 Am J Respir Cell Mol Biol CORRECTION.png
1.26 Han S, Chandel NS (2021) Lessons from cancer metabolism for pulmonary arterial hypertension and fibrosis. Am J Respir Cell Mol Biol 65:134-45. - »Bioblast link«


Hinder 2019 Sci Rep CORRECTION.png
1.27 Hinder LM, Sas KM, O'Brien PD, Backus C, Kayampilly P, Hayes JM, Lin CM, Zhang H, Shanmugam S, Rumora AE, Abcouwer SF, Brosius FC 3rd, Pennathur S, Feldman EL (2019) Mitochondrial uncoupling has no effect on microvascular complications in type 2 diabetes. Sci Rep 9:881. - »Bioblast link«


Lakovou 2022 Front Aging Neurosci CORRECTION.png
1.28 Iakovou E, Kourti M (2022) A comprehensive overview of the complex role of oxidative stress in aging, the contributing environmental stressors and emerging antioxidant therapeutic interventions. Front Aging Neurosci 14:827900. - »Bioblast link«


Intlekofer 2019 Nat Metab CORRECTION.png
1.29 Intlekofer AM, Finley LWS (2019) Metabolic signatures of cancer cells and stem cells. Nat Metab 1:177-88. - »Bioblast link«


Jaramillo-Jimenez 2023 Mitochondrion CORRECTION.png
1.30 Jaramillo-Jimenez A, Giil LM, Borda MG, Tovar-Rios DA, Kristiansen KA, Bruheim P, Aarsland D, Barreto GE, Berge RK (2023) Serum TCA cycle metabolites in Lewy bodies dementia and Alzheimer's disease: network analysis and cognitive prognosis. Mitochondrion 71:17-25. - »Bioblast link«


Koopman 2016 Nat Protoc CORRECTION.png
1.31 Koopman M, Michels H, Dancy BM, Kamble R, Mouchiroud L, Auwerx J, Nollen EA, Houtkooper RH (2016) A screening-based platform for the assessment of cellular respiration in Caenorhabditis elegans. Nat Protoc 11:1798-816. - »Bioblast link«


Liufu 2023 Front Physiol CORRECTION.png
1.32 Liufu T, Yu H, Yu J, Yu M, Tian Y, Ou Y, Deng J, Xing G, Wang Z (2023) Complex I deficiency in m.3243A>G fibroblasts is alleviated by reducing NADH accumulation. Front Physiol 14:1164287. - »Bioblast link«


Luo 2015 J Diabetes Res CORRECTION.png
1.33 Luo X, Li R, Yan LJ (2015) Roles of pyruvate, NADH, and mitochondrial Complex I in redox balance and imbalance in β cell function and dysfunction. J Diabetes Res 2015:512618. - »Bioblast link«


Madamanchi 2007 Circ Res CORRECTION.png
1.34 Madamanchi NR, Runge MS (2007) Mitochondrial dysfunction in atherosclerosis. Circ Res 100:460-73. - »Bioblast link«


Martinez-Reyes 2020 Nature CORRECTION.png
1.35 Martínez-Reyes I, Cardona LR, Kong H, Vasan K, McElroy GS, Werner M, Kihshen H, Reczek CR, Weinberg SE, Gao P, Steinert EM, Piseaux R, Budinger GRS, Chandel NS (2020) Mitochondrial ubiquinol oxidation is necessary for tumour growth. Nature 585:288-92. - »Bioblast link«


Martinez-Reyes, Chandel 2020 CORRECTION.png
1.36 Martínez-Reyes I, Chandel NS (2020) Mitochondrial TCA cycle metabolites control physiology and disease. Nat Commun 11:102. - »Bioblast link«


Massart 2013 Curr Pathobiol Rep CORRECTION.png
1.37 Massart J, Begriche K, Buron N, Porceddu M, Borgne-Sanchez A, Fromenty B (2013) Drug-induced inhibition of mitochondrial fatty acid oxidation and steatosis. Curr Pathobiol Rep 1:147–57. - »Bioblast link«


Massoz 2017 Microbiology Monographs CORRECTION.png
1.38 Massoz S, Cardol P, González-Halphen D, Remacle C (2017) Mitochondrial bioenergetics pathways in Chlamydomonas. In: Hippler M (ed) Chlamydomonas: Molecular genetics and physiology. Microbiology Monographs 30:59-95. Springer, Cham. - »Bioblast link«


Missaglia 2021 CORRECTION.png
1.39 Missaglia S, Tavian D, Angelini C (2021) ETF dehydrogenase advances in molecular genetics and impact on treatment. Crit Rev Biochem Mol Biol 56:360-72. - »Bioblast link«


Mosegaard 2020 Int J Mol Sci CORRECTION.png
1.40 Mosegaard S, Dipace G, Bross P, Carlsen J, Gregersen N, Olsen RKJ (2020) Riboflavin deficiency-implications for general human health and inborn errors of metabolism. Int J Mol Sci 21:3847. - »Bioblast link«


Nolfi-Donegan 2020 Redox Biol CORRECTION.png
1.41 Nolfi-Donegan D, Braganza A, Shiva S (2020) Mitochondrial electron transport chain: Oxidative phosphorylation, oxidant production, and methods of measurement. Redox Biol 37:101674. - »Bioblast link«


Nsiah-Sefaa 2016 Bioscie Reports CORRECTION.png
1.42 Nsiah-Sefaa A, McKenzie M (2016) Combined defects in oxidative phosphorylation and fatty acid β-oxidation in mitochondrial disease. Biosci Rep 36:e00313. - »Bioblast link«


Pelletier-Galarneau 2021 Curr Cardiol Rep CORRECTION.png
1.43 Pelletier-Galarneau M, Detmer FJ, Petibon Y, Normandin M, Ma C, Alpert NM, El Fakhri G (2021) Quantification of myocardial mitochondrial membrane potential using PET. Curr Cardiol Rep 23:70. - »Bioblast link«


Peng 2022 Front Oncol CORRECTION.png
1.44 Peng M, Huang Y, Zhang L, Zhao X, Hou Y (2022) Targeting mitochondrial oxidative phosphorylation eradicates acute myeloid leukemic stem cells. Front Oncol 12:899502. - »Bioblast link«


Protti 2006 Crit Care CORRECTION.png
1.45 Protti A, Singer M (2006) Bench-to-bedside review: potential strategies to protect or reverse mitochondrial dysfunction in sepsis-induced organ failure. Crit Care 10:228. - »Bioblast link«


Rai 2022 G3 (Bethesda) CORRECTION.png
1.46 Rai M, Carter SM, Shefali SA, Mahmoudzadeh NH, Pepin R, Tennessen JM (2022) The Drosophila melanogaster enzyme glycerol-3-phosphate dehydrogenase 1 is required for oogenesis, embryonic development, and amino acid homeostasis. G3 (Bethesda) 12:jkac115. - »Bioblast link«


Sadri 2023 Arch Biochem Biophys CORRECTION.png
1.47 Sadri S, Tomar N, Yang C, Audi SH, Cowley AW Jr, Dash RK (2023) Effects of ROS pathway inhibitors and NADH and FADH2 linked substrates on mitochondrial bioenergetics and ROS emission in the heart and kidney cortex and outer medulla. Arch Biochem Biophys 744:109690. - »Bioblast link«


Sanchez et al 2001 CORRECTION.png
1.48 Sanchez H, Zoll J, Bigard X, Veksler V, Mettauer B, Lampert E, Lonsdorfer J, Ventura-Clapier R (2001) Effect of cyclosporin A and its vehicle on cardiac and skeletal muscle mitochondria: relationship to efficacy of the respiratory chain. Br J Pharmacol 133:781-8. - »Bioblast link«


Scandella 2023 Trends Endocrinol Metab CORRECTION.png
1.49 Scandella V, Petrelli F, Moore DL, Braun SMG, Knobloch M (2023) Neural stem cell metabolism revisited: a critical role for mitochondria. Trends Endocrinol Metab 34:446-61. - »Bioblast link«


Schwartz 2022 JACC Basic Transl Sci CORRECTION.png
1.50 Schwartz B, Gjini P, Gopal DM, Fetterman JL (2022) Inefficient batteries in heart failure: metabolic bottlenecks disrupting the mitochondrial ecosystem. JACC Basic Transl Sci 7:1161-79. - »Bioblast link«


Shen 2021 Cells CORRECTION.png
1.51 Shen YA, Chen CC, Chen BJ, Wu YT, Juan JR, Chen LY, Teng YC, Wei YH (2021) Potential therapies targeting metabolic pathways in cancer stem cells. Cells 10:1772. - »Bioblast link«


Shinmura 2013 Oxid Med Cell Longev CORRECTION.png
1.52 Shinmura K (2013) Effects of caloric restriction on cardiac oxidative stress and mitochondrial bioenergetics: potential role of cardiac sirtuins. Oxid Med Cell Longev 2013:528935. - »Bioblast link«


Toleikis 2020 Cells CORRECTION.png
1.53 Toleikis A, Trumbeckaite S, Liobikas J, Pauziene N, Kursvietiene L, Kopustinskiene DM (2020) Fatty acid oxidation and mitochondrial morphology changes as key modulators of the affinity for ADP in rat heart mitochondria. Cells 9:340. - »Bioblast link«


Wilson 2023 Trends Cell Biol CORRECTION.png
1.54 Wilson N, Kataura T, Korsgen ME, Sun C, Sarkar S, Korolchuk VI (2023) The autophagy-NAD axis in longevity and disease. Trends Cell Biol 33:788-802. - »Bioblast link«


Yusoff 2015 InTech CORRECTION.png
1.55 Yusoff AAM (2015) Role of mitochondrial DNA mutations in brain tumors: A mini-review. J Cancer Res Ther 11:535-44. - »Bioblast link«


1.55 Yusoff AAM, Ahmad F, Idris Z, Jaafar H, Abdullah JM (2015) Understanding mitochondrial DNA in brain tumorigenesis. In: Lichtor T, ed. Molecular considerations and evolving surgical management issues in the treatment of patients with a brain tumor. InTech: http://dx.doi.org/10.5772/58965 - »Bioblast link«


FADH2 ⟶ FAD

Brownlee 2001 Nature CORRECTION.png
2.1 Arden GB, Ramsey DJ (2015) Diabetic retinopathy and a novel treatment based on the biophysics of rod photoreceptors and dark adaptation. In: Kolb H, Fernandez E, Nelson R, eds. Webvision: The organization of the retina and visual system [Internet]. Salt Lake City (UT): University of Utah Health Sciences Center; 1995-. - »Bioblast link«


Bao 2021 Cells CORRECTION.png
2.2 Bao MH, Wong CC (2021) Hypoxia, metabolic reprogramming, and drug resistance in liver cancer. Cells 10:1715. - »Bioblast link«


Bayona-Bafaluy 2021 Redox Biol CORRECTION.png
2.3 Bayona-Bafaluy MP, Garrido-Pérez N, Meade P, Iglesias E, Jiménez-Salvador I, Montoya J, Martínez-Cué C, Ruiz-Pesini E (2021) Down syndrome is an oxidative phosphorylation disorder. Redox Biol 41:101871. - »Bioblast link«


Bellance 2009 Front Biosci (Landmark Ed) CORRECTION.png
2.4 Bellance N, Lestienne P, Rossignol R (2009) Mitochondria: from bioenergetics to the metabolic regulation of carcinogenesis. Front Biosci (Landmark Ed) 14:4015-34. - »Bioblast link«


Benard 2011 Springer CORRECTION.png
2.5 Benard G, Bellance N, Jose C, Rossignol R (2011) Relationships between mitochondrial dynamics and bioenergetics. In: Lu Bingwei (ed) Mitochondrial dynamics and neurodegeneration. Springer ISBN 978-94-007-1290-4:47-68. - »Bioblast link«


Bernardo 2013 Biol Chem CORRECTION.png
2.6 Bernardo A, De Simone R, De Nuccio C, Visentin S, Minghetti L (2013) The nuclear receptor peroxisome proliferator-activated receptor-γ promotes oligodendrocyte differentiation through mechanisms involving mitochondria and oscillatory Ca2+ waves. Biol Chem 394:1607-14. - »Bioblast link«


Betiu 2022 Int J Mol Sci CORRECTION.png
2.7 Bețiu AM, Noveanu L, Hâncu IM, Lascu A, Petrescu L, Maack C, Elmér E, Muntean DM (2022) Mitochondrial effects of common cardiovascular medications: the good, the bad and the mixed. Int J Mol Sci 23:13653. - »Bioblast link«


Beutner 2014 PLoS One CORRECTION.png
2.8 Beutner G, Eliseev RA, Porter GA Jr (2014) Initiation of electron transport chain activity in the embryonic heart coincides with the activation of mitochondrial complex 1 and the formation of supercomplexes. PLoS One 9:e113330. - »Bioblast link«


Bhalerao 2012 Science CORRECTION.png
2.9 Bhalerao S, Clandinin TR (2012) Vitamin K2 takes charge. Science 336:1241-2. - »Bioblast link«


Billingham 2022 Nat Immunol CORRECTION.png
2.10 Billingham LK, Stoolman JS, Vasan K, Rodriguez AE, Poor TA, Szibor M, Jacobs HT, Reczek CR, Rashidi A, Zhang P, Miska J, Chandel NS (2022) Mitochondrial electron transport chain is necessary for NLRP3 inflammasome activation. Nat Immunol 23:692-704. - »Bioblast link«


Brownlee 2001 Nature CORRECTION.png
2.11 Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 14:813-20. - »Bioblast link«
Copied by: Arden GB, Ramsey DJ (2015) Diabetic retinopathy and a novel treatment based on the biophysics of rod photoreceptors and dark adaptation. In: Kolb H, Fernandez E, Nelson R, eds. Webvision: The organization of the retina and visual system [Internet]. Salt Lake City (UT): University of Utah Health Sciences Center; 1995-. - »Bioblast link«


Brownlee 2003 J Clin Invest CORRECTION.png
2.12 Brownlee M (2003) A radical explanation for glucose-induced beta cell dysfunction. J Clin Invest 112:1788-90. - »Bioblast link«


Chakrabarty 2021 Cell Stem Cell 3 CORRECTION.png
2.13 Chakrabarty RP, Chandel NS (2021) Mitochondria as signaling organelles control mammalian stem cell fate. Cell Stem Cell 28:394-408. - »Bioblast link«


Choudhury 2021 Antioxidants (Basel) CORRECTION.png
2.14 Choudhury FK (2021) Mitochondrial redox metabolism: the epicenter of metabolism during cancer progression. Antioxidants (Basel) 10:1838. - »Bioblast link«


De Villiers 2018 Adv Exp Med Biol CORRECTION.png
2.15 de Villiers D, Potgieter M, Ambele MA, Adam L, Durandt C, Pepper MS (2018) The role of reactive oxygen species in adipogenic differentiation. Adv Exp Med Biol 1083:125-144. - »Bioblast link«


Delport 2017 Metab Brain Dis CORRECTION.png
2.16 Delport A, Harvey BH, Petzer A, Petzer JP (2017) Methylene blue and its analogues as antidepressant compounds. Metab Brain Dis 32:1357-82. - »Bioblast link«


Ekbal 2013 Chest CORRECTION.png
2.17 Ekbal NJ, Dyson A, Black C, Singer M (2013) Monitoring tissue perfusion, oxygenation, and metabolism in critically ill patients. Chest 143:1799-1808. - »Bioblast link«


Escoll 2019 Immunometabolism CORRECTION.png
2.18 Escoll P, Platon L, Buchrieser C (2019) Roles of mitochondrial respiratory Complexes during infection. Immunometabolism 1:e190011. - »Bioblast link«


Eyenga 2022 Cells CORRECTION.png
2.19 Eyenga P, Rey B, Eyenga L, Sheu SS (2022) Regulation of oxidative phosphorylation of liver mitochondria in sepsis. Cells 11:1598. - »Bioblast link«


Favia 2019 J Clin Med CORRECTION.png
2.20 Favia M, de Bari L, Bobba A, Atlante A (2019) An intriguing involvement of mitochondria in cystic fibrosis. J Clin Med 8:1890. - »Bioblast link«


Feher 2017 Academic Press CORRECTION.png
2.21 Feher J (2017) 2.10 - ATP production II: The TCA cycle and oxidative phosphorylation. Quantitative human physiology (2nd ed) Academic Press, Boston:277-40. - »Bioblast link«


Garcia-Neto 2017 PLOS ONE CORRECTION.png
2.22 Garcia-Neto W, Cabrera-Orefice A, Uribe-Carvajal S, Kowaltowski AJ, Alberto Luévano-Martínez L (2017) High osmolarity environments activate the mitochondrial alternative oxidase in Debaryomyces Hansenii. PLOS ONE 12:e0169621. - »Bioblast link«


Garrido-Perez 2020 Int J Mol Sci CORRECTION.png
2.23 Garrido-Pérez N, Vela-Sebastián A, López-Gallardo E, Emperador S, Iglesias E, Meade P, Jiménez-Mallebrera C, Montoya J, Bayona-Bafaluy MP, Ruiz-Pesini E (2020) Oxidative phosphorylation dysfunction modifies the cell secretome. Int J Mol Sci 21:3374. - »Bioblast link«


Gasmi 2021 Arch Toxicol CORRECTION.png
2.24 Gasmi A, Peana M, Arshad M, Butnariu M, Menzel A, Bjørklund G (2021) Krebs cycle: activators, inhibitors and their roles in the modulation of carcinogenesis. Arch Toxicol 95:1161-78. - »Bioblast link«


Geng 2023 Front Physiol CORRECTION.png
2.25 Geng Y, Hu Y, Zhang F, Tuo Y, Ge R, Bai Z (2023) Mitochondria in hypoxic pulmonary hypertension, roles and the potential targets. Front Physiol 14:1239643. - »Bioblast link«


Giachin 2021 Angew Chem Int Ed Engl CORRECTION.png
2.26 Giachin G, Jessop M, Bouverot R, Acajjaoui S, Saïdi M, Chretien A, Bacia-Verloop M, Signor L, Mas PJ, Favier A, Borel Meneroud E, Hons M, Hart DJ, Kandiah E, Boeri Erba E, Buisson A, Leonard G, Gutsche I, Soler-Lopez M (2021) Assembly of the mitochondrial Complex I assembly complex suggests a regulatory role for deflavination. Angew Chem Int Ed Engl 60:4689-97. - »Bioblast link«


Gopan 2021 World J Hepatol CORRECTION.png
2.27 Gopan A, Sarma MS (2021) Mitochondrial hepatopathy: Respiratory chain disorders- 'breathing in and out of the liver'. World J Hepatol 13:1707-26. - »Bioblast link«


Gujarati 2020 Am J Physiol Renal Physiol CORRECTION.png
2.28 Gujarati NA, Vasquez JM, Bogenhagen DF, Mallipattu SK (2020) The complicated role of mitochondria in the podocyte. Am J Physiol Renal Physiol 319:F955-65. - »Bioblast link«


Han 2019 Am J Respir Cell Mol Biol CORRECTION.png
2.29 Han S, Chandel NS (2019) There is no smoke without mitochondria. Am J Respir Cell Mol Biol 60:489-91. - »Bioblast link«


Hanna 2023 Antioxid Redox Signal CORRECTION.png
2.30 Hanna D, Kumar R, Banerjee R (2023) A metabolic paradigm for hydrogen sulfide signaling via electron transport chain plasticity. Antioxid Redox Signal 38:57-67. - »Bioblast link«


Hanna 2022 Front Cell Dev Biol CORRECTION.png
2.31 Hanna J, David LA, Touahri Y, Fleming T, Screaton RA, Schuurmans C (2022) Beyond genetics: the role of metabolism in photoreceptor survival, development and repair. Front Cell Dev Biol 10:887764. - »Bioblast link«


Howie 2014 Front Immunol CORRECTION.png
2.32 Howie D, Waldmann H, Cobbold S (2014) Nutrient sensing via mTOR in T cells maintains a tolerogenic microenvironment. Front Immunol 5:409. - »Bioblast link«


Jarmuszkiewicz 2023 Front Biosci CORRECTION.png
2.33 Jarmuszkiewicz W, Dominiak K, Budzinska A, Wojcicki K, Galganski L (2023) Mitochondrial coenzyme Q redox homeostasis and reactive oxygen species production. Front Biosci (Landmark Ed) 28:61. - »Bioblast link«


Javali 2023 Biogerontology CORRECTION.png
2.34 Javali PS, Sekar M, Kumar A, Thirumurugan K (2023) Dynamics of redox signaling in aging via autophagy, inflammation, and senescence. Biogerontology 24:663-78. - »Bioblast link«


Jayasankar 2022 ACS Omega CORRECTION.png
2.35 Jayasankar V, Vrdoljak N, Roma A, Ahmed N, Tcheng M, Minden MD, Spagnuolo PA (2022) Novel mango ginger bioactive (2,4,6-trihydroxy-3,5-diprenyldihydrochalcone) inhibits mitochondrial metabolism in combination with Avocatin B. ACS Omega 7:1682-93. - »Bioblast link«


Keane 2011 Parkinsons Dis CORRECTION.png
2.36 Keane PC, Kurzawa M, Blain PG, Morris CM (2011) Mitochondrial dysfunction in Parkinson's disease. Parkinsons Dis 2011:716871. - »Bioblast link«


Kim 2010 Korean Diabetes J CORRECTION.png
2.37 Kim EH, Koh EH, Park JY, Lee KU (2010) Adenine nucleotide translocator as a regulator of mitochondrial function: implication in the pathogenesis of metabolic syndrome. Korean Diabetes J 34:146-53. - »Bioblast link«


Knottnerus 2018 Rev Endocr Metab Disord CORRECTION.png
2.38 Knottnerus SJG, Bleeker JC, Wüst RCI, Ferdinandusse S, IJlst L, Wijburg FA, Wanders RJA, Visser G, Houtkooper RH (2018) Disorders of mitochondrial long-chain fatty acid oxidation and the carnitine shuttle. Rev Endocr Metab Disord 19:93-106. - »Bioblast link«


Kumar 2021 J Biol Chem CORRECTION.png
2.39 Kumar R, Landry AP, Guha A, Vitvitsky V, Lee HJ, Seike K, Reddy P, Lyssiotis CA, Banerjee R (2021) A redox cycle with complex II prioritizes sulfide quinone oxidoreductase dependent H2S oxidation. J Biol Chem 298:101435. - »Bioblast link«


Ley-Ngardigal 2022 FEBS J CORRECTION.png
2.40 Ley-Ngardigal S, Bertolin G (2022) Approaches to monitor ATP levels in living cells: where do we stand?. FEBS J 289:7940-69. - »Bioblast link«


Litwack 2018 Academic Press CORRECTION.png
2.41 Litwack G (2018) Metabolism of fat, carbohydrate, and nucleic acids. In: Litwack G (ed) Human biochemistry, Academic Press, Chapter 14:395-426. - »Bioblast link«


Litwiniuk 2021 Pharmaceuticals (Basel) CORRECTION.png
2.42 Litwiniuk A, Baranowska-Bik A, Domańska A, Kalisz M, Bik W (2021) Contribution of mitochondrial dysfunction combined with NLRP3 inflammasome activation in selected neurodegenerative diseases. Pharmaceuticals (Basel) 14:1221. - »Bioblast link«


Liu 2023 Int J Biol Sci CORRECTION.png
2.43 Liu Y, Sun Y, Guo Y, Shi X, Chen X, Feng W, Wu LL, Zhang J, Yu S, Wang Y, Shi Y (2023) An overview: the diversified role of mitochondria in cancer metabolism. Int J Biol Sci 19:897-915. - »Bioblast link«


Lozano 2019 Oxid Med Cell Longev CORRECTION.png
2.44 Lozano O, Lázaro-Alfaro A, Silva-Platas C, Oropeza-Almazán Y, Torres-Quintanilla A, Bernal-Ramírez J, Alves-Figueiredo H, García-Rivas G (2019) Nanoencapsulated quercetin improves cardioprotection during hypoxia-reoxygenation injury through preservation of mitochondrial function. Oxid Med Cell Longev 2019:7683051. - »Bioblast link«


Luo 2020 Int J Mol Sci CORRECTION.png
2.45 Luo Y, Ma J, Lu W (2020) The significance of mitochondrial dysfunction in cancer. Int J Mol Sci 21:5598. - »Bioblast link«


Ma 2012 Exp Diabetes Res CORRECTION.png
2.46 Ma ZA, Zhao Z, Turk J (2012) Mitochondrial dysfunction and β-cell failure in type 2 diabetes mellitus. Exp Diabetes Res 2012:703538. - »Bioblast link«


Maffezzini 2020 Cell Mol Life Sci CORRECTION.jpg.png
2.47 Maffezzini C, Calvo-Garrido J, Wredenberg A, Freyer C (2020) Metabolic regulation of neurodifferentiation in the adult brain. Cell Mol Life Sci 77:2483-96. - »Bioblast link«


Mantle 2021 Antioxidants (Basel) CORRECTION.png
2.48 Mantle D, Heaton RA, Hargreaves IP (2021) Coenzyme Q10, ageing and the nervous system: an overview. Antioxidants (Basel) 11:2. - »Bioblast link«


Martinez-Reyes 2016 Mol Cell CORRECTION.png
2.49 Martínez-Reyes I, Diebold LP, Kong H, Schieber M, Huang H, Hensley CT, Mehta MM, Wang T, Santos JH, Woychik R, Dufour E, Spelbrink JN, Weinberg SE, Zhao Y, DeBerardinis RJ, Chandel NS (2016) TCA cycle and mitochondrial membrane potential are necessary for diverse biological functions. Mol Cell 61:199-209. - »Bioblast link«


Mathiyazakan 2023 Antimicrob Agents Chemother CORRECTION.png
2.50 Mathiyazakan V, Wong CF, Harikishore A, Pethe K, Grüber G (20) Cryo-electron microscopy structure of the Mycobacterium tuberculosis cytochrome bcc:aa3 supercomplex and a novel inhibitor targeting subunit cytochrome cI. Antimicrob Agents Chemother 67:e0153122. - »Bioblast link«


Mathur 2017 Front Cell Neurosci CORRECTION.png
2.51 Mathur D, Riffo-Campos AL, Castillo J, Haines JD, Vidaurre OG, Zhang F, Coret-Ferrer F, Casaccia P, Casanova B, Lopez-Rodas G (2017) Bioenergetic failure in rat oligodendrocyte progenitor cells treated with cerebrospinal fluid derived from multiple sclerosis poatients. Front Cell Neurosci 11:209. - »Bioblast link«


McCollum 2019 Front Plant Sci CORRECTION.png
2.52 McCollum C, Geißelsöder S, Engelsdorf T, Voitsik AM, Voll LM (2019) Deficiencies in the mitochondrial electron transport chain affect redox poise and resistance toward Colletotrichum higginsianum. Front Plant Sci 10:1262. - »Bioblast link«


McElroy 2017 Exp Cell Res.png
2.53 McElroy GS, Chandel NS (2017) Mitochondria control acute and chronic responses to hypoxia. Exp Cell Res 356:217-22. - »Bioblast link«


McElroy 2020 Cell Metab CORRECTION.png
2.54 McElroy GS, Reczek CR, Reyfman PA, Mithal DS, Horbinski CM, Chandel NS (2020) NAD+ regeneration rescues lifespan, but not ataxia, in a mouse model of brain mitochondrial Complex I dysfunction. Cell Metab 32:301-8.e6. - »Bioblast link«


Morelli 2019 Open Biol CORRECTION.png
2.55 Morelli AM, Ravera S, Calzia D, Panfoli I (2019) An update of the chemiosmotic theory as suggested by possible proton currents inside the coupling membrane. Open Biol 9:180221. - »Bioblast link«


Narine 2022 Front Cell Neurosci CORRECTION.png
2.56 Narine M, Colognato H (2022) Current insights into oligodendrocyte metabolism and its power to sculpt the myelin landscape. Front Cell Neurosci 16:892968. - »Bioblast link«


Paprocka 2022 Metabolites CORRECTION.png
2.57 Paprocka J, Nowak M, Chuchra P, Śmigiel R (2022) COQ8A-ataxia as a manifestation of primary coenzyme Q deficiency. Metabolites 12:955. - »Bioblast link«


Pena-Corona 2023 Front Pharmacol CORRECTION.png
2.58 Peña-Corona SI, Hernández-Parra H, Bernal-Chávez SA, Mendoza-Muñoz N, Romero-Montero A, Del Prado-Audelo ML, Cortés H, Ateşşahin DA, Habtemariam S, Almarhoon ZM, Abdull Razis AF, Modu B, Sharifi-Rad J, Leyva-Gómez G (2023) Neopeltolide and its synthetic derivatives: a promising new class of anticancer agents. Front Pharmacol 14:1206334. - »Bioblast link«


Penjweini 2020 Redox Biol CORRECTION.png
2.59 Penjweini R, Roarke B, Alspaugh G, Gevorgyan A, Andreoni A, Pasut A, Sackett DL, Knutson JR (2020) Single cell-based fluorescence lifetime imaging of intracellular oxygenation and metabolism. Redox Biol 34:101549. - »Bioblast link«


Preston 2023 Academic Press CORRECTION.png
2.60 Preston G, El Soufi El Sabbagh D, Emmerzaal TL, Morava E, Andreazza AC, Rahman S, Kozicz T (2023) Antidepressants, mood-stabilizing drugs, and mitochondrial functions: For better or for worse. In: de Oliveira MR (ed) Mitochondrial intoxication:323-49. Academic Press. - »Bioblast link«


Prochaska 2013 Springer CORRECTION.png
2.61 Prochaska LJ, Cvetkov TL (2013) Mitochondrial electron transport. In: Roberts, G.C.K. (eds) Encyclopedia of Biophysics. Springer, Berlin, Heidelberg. - »Bioblast link«


Protasoni 2021 Int J Mol Sci CORRECTION.png
2.62 Protasoni M, Zeviani M (2021) Mitochondrial structure and bioenergetics in normal and disease conditions. Int J Mol Sci 22:586. - »Bioblast link«


Rahman 2022 Springer CORRECTION.png
2.63 Rahman S, Mayr JA (2022) Disorders of oxidative phosphorylation. In: Saudubray JM, Baumgartner MR, García-Cazorla Á, Walter J (eds) Inborn metabolic diseases. Springer, Berlin, Heidelberg. - »Bioblast link«


Read 2021 Redox Biol CORRECTION.png
2.64 Read AD, Bentley RE, Archer SL, Dunham-Snary KJ (2021) Mitochondrial iron-sulfur clusters: Structure, function, and an emerging role in vascular biology. Redox Biol 47:102164. - »Bioblast link«


Risiglione 2020 Int J Mol Sci CORRECTION.png
2.65 Risiglione P, Leggio L, Cubisino SAM, Reina S, Paternò G, Marchetti B, Magrì A, Iraci N, Messina A (2020) High-resolution respirometry reveals MPP+ mitochondrial toxicity mechanism in a cellular model of parkinson's disease. Int J Mol Sci 21:E7809. - »Bioblast link«


Rodick 2018 Nutrition and Dietary Supplements CORRECTION.png
2.66 Rodick TC, Seibels DR, Babu JR, Huggins KW, Ren G, Mathews ST (2018) Potential role of coenzyme Q10 in health and disease conditions. Nutrition and Dietary Supplements 10:1-11. - »Bioblast link«


Sarmah 2019 Transl Stroke Res CORRECTION.png
2.67 Sarmah D, Kaur H, Saraf J, Vats K, Pravalika K, Wanve M, Kalia K, Borah A, Kumar A, Wang X, Yavagal DR, Dave KR, Bhattacharya P (2019) Mitochondrial dysfunction in stroke: implications of stem cell therapy. Transl Stroke Res doi: 10.1007/s12975-018-0642-y - »Bioblast link«


Sharma 2021 Int J Mol Sci CORRECTION.png
2.68 Sharma C, Kim S, Nam Y, Jung UJ, Kim SR (2021) Mitochondrial dysfunction as a driver of cognitive impairment in Alzheimer's disease. Int J Mol Sci 22:4850. - »Bioblast link«


Shu 2023 Front Immunol CORRECTION.png
2.69 Shu P, Liang H, Zhang J, Lin Y, Chen W, Zhang D (2023) Reactive oxygen species formation and its effect on CD4+ T cell-mediated inflammation. Front Immunol 14:1199233. - »Bioblast link«


Simon 2022 Function (Oxf) CORRECTION.png
2.70 Simon L, Molina PE (2022) Cellular bioenergetics: experimental evidence for alcohol-induced adaptations. Function (Oxf) 3:zqac039. - »Bioblast link«


Smith 2023 Nat Rev Mol Cell Biol CORRECTION.png
2.71 Smith JAB, Murach KA, Dyar KA, Zierath JR (2023) Exercise metabolism and adaptation in skeletal muscle. Nat Rev Mol Cell Biol 24:607-32. - »Bioblast link«


Sommer 2020 Sci Adv CORRECTION.png
2.72 Sommer N, Alebrahimdehkordi N, Pak O, Knoepp F, Strielkov I, Scheibe S, Dufour E, Andjelekovic A, Sydykov A, Saraji A, Petrovic A, Quanz K, Hecker M, Kumar M, Wahl J, Kraut S, Seeger W, Schermuly RT, Ghofrani HA, Ramser K, Braun T, Jacobs HT, Weissmann N, Szibor M (2020) Bypassing mitochondrial complex III using alternative oxidase inhibits acute pulmonary oxygen sensing. Sci Adv 6:eaba0694. - »Bioblast link«


Spinelli 2018 Nat Cell Biol CORRECTION.png
2.73 Spinelli JB, Haigis MC (2018) The multifaceted contributions of mitochondria to cellular metabolism. Nat Cell Biol 20:745-54. - »Bioblast link«


Srivastava 2016 Clin Transl Med CORRECTION.png
2.74 Srivastava S (2016) Emerging therapeutic roles for NAD(+) metabolism in mitochondrial and age-related disorders. Clin Transl Med 5:25. - »Bioblast link«


Szabo 2020 Int J Mol Sci CORRECTION.png
2.75 Szabo L, Eckert A, Grimm A (2020) Insights into disease-associated tau impact on mitochondria. Int J Mol Sci 21:6344. - »Bioblast link«


Tang 2014 Front Physiol CORRECTION.png
2.76 Tang X, Luo YX, Chen HZ, Liu DP (2014) Mitochondria, endothelial cell function, and vascular diseases. Front Physiol 5:175. - »Bioblast link«


Thomas 2019 Cell Mol Life Sci CORRECTION.png
2.77 Thomas LW, Ashcroft M (2019) Exploring the molecular interface between hypoxia-inducible factor signalling and mitochondria. Cell Mol Life Sci 76:1759-77. - »Bioblast link«


Tian 2017 Front Genet CORRECTION.png
2.78 Tian R, Yin D, Liu Y, Seim I, Xu S, Yang G (2017) Adaptive evolution of energy metabolism-related genes in hypoxia-tolerant mammals. Front Genet 8:205. - »Bioblast link«


Tirichen 2021 Front Physiol CORRECTION.png
2.79 Tirichen H, Yaigoub H, Xu W, Wu C, Li R, Li Y (2021) Mitochondrial reactive oxygen species and their contribution in chronic kidney disease progression through oxidative stress. Front Physiol 12:627837. - »Bioblast link«


Turton 2022 Int J Mol Sci CORRECTION.png
2.80 Turton N, Cufflin N, Dewsbury M, Fitzpatrick O, Islam R, Watler LL, McPartland C, Whitelaw S, Connor C, Morris C, Fang J, Gartland O, Holt L, Hargreaves IP (2022) The biochemical assessment of mitochondrial respiratory chain disorders. Int J Mol Sci 23:7487. - »Bioblast link«


Vayalil 2019 Oncol Lett CORRECTION.png
2.81 Vayalil PK (2019) Mitochondrial oncobioenergetics of prostate tumorigenesis. Oncol Lett 18:4367-76. - »Bioblast link«


Vekshin 2020 Springer Cham CORRECTION.png
2.82 Vekshin N (2020) Biophysics of mitochondria. Springer Cham: 197 pp. - »Bioblast link«


Wang 2016 ACS Appl Mater Interfaces CORRECTION.png
2.83 Wang G, Feng H, Gao A, Hao Q, Jin W, Peng X, Li W, Wu G, Chu PK (2016) Extracellular electron transfer from aerobic bacteria to Au-loaded TiO2 semiconductor without light: a new bacteria-killing mechanism other than localized surface plasmon resonance or microbial fuel cells. ACS Appl Mater Interfaces 8:24509-16. - »Bioblast link«


Wipf 2022 J Huntingtons Dis CORRECTION.png
2.84 Wipf P, Polyzos AA, McMurray CT (2022) A double-pronged sword: XJB-5-131 is a suppressor of somatic instability and toxicity in Huntington's disease. J Huntingtons Dis 11:3-15. - »Bioblast link«


Xia 2022 Front Oncol CORRECTION.png
2.85 Xia H, Huang Z, Wang Z, Liu S, Zhao X, You J, Xu Y, Yam JWP, Cui Y (2022) Glucometabolic reprogramming: From trigger to therapeutic target in hepatocellular carcinoma. Front Oncol 12:953668. - »Bioblast link«


Yang 2022 Front Cell Dev Biol CORRECTION.png
2.86 Yang J, Guo Q, Feng X, Liu Y, Zhou Y (2022) Mitochondrial dysfunction in cardiovascular diseases: potential targets for treatment. Front Cell Dev Biol 10:841523. - »Bioblast link«


Yepez 2018 PLOS One Fig1B.jpg
2.87 Yépez VA, Kremer LS, Iuso A, Gusic M, Kopajtich R, Koňaříková E, Nadel A, Wachutka L, Prokisch H, Gagneur J (2018) OCR-Stats: Robust estimation and statistical testing of mitochondrial respiration activities using Seahorse XF Analyzer. PLOS ONE 13:e0199938. - »Bioblast link«


Yuan 2022 Oxid Med Cell Longev CORRECTION.png
2.88 Yuan Q, Zeng ZL, Yang S, Li A, Zu X, Liu J (2022) Mitochondrial stress in metabolic inflammation: modest benefits and full losses. Oxid Med Cell Longev 2022:8803404. - »Bioblast link«


Zhang 2018 Mil Med Res CORRECTION.png
2.89 Zhang H, Feng YW, Yao YM (2018) Potential therapy strategy: targeting mitochondrial dysfunction in sepsis. Mil Med Res 5:41. - »Bioblast link«


FADH2

Alegre 2019 Am J Transplant CORRECTION.png
3.1 Alegre ML (2019) Treg respiration. Am J Transplant 19:969. - »Bioblast link«


Ali 2023 Trends Cell Biol CORRECTION.png
3.2 Ali ES, Ben-Sahra I (2023) Regulation of nucleotide metabolism in cancers and immune disorders. Trends Cell Biol 33:950-66. - »Bioblast link«


Balaban 2005 Cell CORRECTION.png
3.3 Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120:483-95. - »Bioblast link«


Bansal 2019 Academic Press CORRECTED.png
3.4 Bansal A, Rashid C, Simmons RA (2019) Impact of fetal programming on mitochondrial function and susceptibility to obesity and type 2 diabetes. Academic Press In: Mitochondria in obesity and type 2 diabetes. Morio B, Pénicaud L, Rigoulet M (eds) Academic Press. - »Bioblast link«


Benard 2011 Springer 2.4 CORRECTION.png
3.5 Benard G, Bellance N, Jose C, Rossignol R (2011) Relationships between mitochondrial dynamics and bioenergetics. In: Lu Bingwei (ed) Mitochondrial dynamics and neurodegeneration. Springer ISBN 978-94-007-1290-4:47-68. - »Bioblast link«


Bertero 2018 Nat Rev Cardiol CORRECTION.png
3.6 Bertero E, Maack C (2018) Metabolic remodelling in heart failure. Nat Rev Cardiol 15:457-70. - »Bioblast link«


Bertero 2022 Function (Oxf) CORRECTION.png
3.7 Bertero E, Maack C (2022) Rethinking Mitchell's chemiosmotic theory: potassium dominates over proton flux to drive mitochondrial F1Fo-ATP synthase. Function (Oxf) 3:zqac012. - »Bioblast link«


Breuer 2013 Neurobiol Dis CORRECTION.png
3.8 Breuer ME, Koopman WJ, Koene S, Nooteboom M, Rodenburg RJ, Willems PH, Smeitink JA (2013) The role of mitochondrial OXPHOS dysfunction in the development of neurologic diseases. Neurobiol Dis 51:27-34. - »Bioblast link«


Chang 2023 Front Endocrinol (Lausanne) CORRECTION.png
3.9 Chang JS (2023) Recent insights into the molecular mechanisms of simultaneous fatty acid oxidation and synthesis in brown adipocytes. Front Endocrinol (Lausanne) 14:1106544. - »Bioblast link«


Chen 2014 Circ Res CORRECTION.png
3.10 Chen YR, Zweier JL (2014) Cardiac mitochondria and reactive oxygen species generation. Circ Res 114:524-37. - »Bioblast link«
  • 3.11 Copied (without reference) by: Chen CL, Zhang L, Jin Z, Kasumov T, Chen YR (2022) Mitochondrial redox regulation and myocardial ischemia-reperfusion injury. Am J Physiol Cell Physiol 322:C12-23. - »Bioblast link«


Chowdhury 2018 Oxid Med Cell Longev CORRECTION.png
3.12 Roy Chowdhury S, Banerji V (2018) Targeting mitochondrial bioenergetics as a therapeutic strategy for chronic lymphocytic leukemia. Oxid Med Cell Longev 2018:2426712. - »Bioblast link«


Connolly 2018 Cell Death Differ CORRECTION.png
3.13 Connolly NMC, Theurey P, Adam-Vizi V, Bazan NG, Bernardi P, Bolaños JP, Culmsee C, Dawson VL, Deshmukh M, Duchen MR, Düssmann H, Fiskum G, Galindo MF, Hardingham GE, Hardwick JM, Jekabsons MB, Jonas EA, Jordán J, Lipton SA, Manfredi G, Mattson MP, McLaughlin B, Methner A, Murphy AN, Murphy MP, Nicholls DG, Polster BM, Pozzan T, Rizzuto R, Satrústegui J, Slack RS, Swanson RA, Swerdlow RH, Will Y, Ying Z, Joselin A, Gioran A, Moreira Pinho C, Watters O, Salvucci M, Llorente-Folch I, Park DS, Bano D, Ankarcrona M, Pizzo P, Prehn JHM (2018) Guidelines on experimental methods to assess mitochondrial dysfunction in cellular models of neurodegenerative diseases. Cell Death Differ 25:542-72. - »Bioblast link«


Cortez-Pinto 2009 J Hepatol CORRECTION.png
3.14 Cortez-Pinto H, Machado MV (2009) Uncoupling proteins and non-alcoholic fatty liver disease. J Hepatol 50:857-60. - »Bioblast link«


Dawson 2021 Open Library CORRECTION.png
3.15 Dawson J (2021) Oxidative Phosphorylation: The Electron Transport Chain. Chapter 23. Open Library. - »Bioblast link«


DiMauro 2003 N Engl J Med CORRECTION.png
3.16 DiMauro S, Schon EA (2003) Mitochondrial respiratory-chain diseases. N Engl J Med 348:2656-68. - »Bioblast link«


Fogg 2011 Chin J Cancer CORRECTION.png
3.17 Fogg VC, Lanning NJ, Mackeigan JP (2011) Mitochondria in cancer: at the crossroads of life and death. Chin J Cancer 30:526-39. - »Bioblast link«


Forbes 2018 Nat Rev Nephrol CORRECTION.png
3.18 Forbes JM, Thorburn DR (2018) Mitochondrial dysfunction in diabetic kidney disease. Nat Rev Nephrol 14:291-312. - »Bioblast link«


Frangos 2023 J Biol Chem CORRECTION.png
3.19 Frangos SM, DesOrmeaux GJ, Holloway GP (2023) Acidosis attenuates CPT-I supported bioenergetics as a potential mechanism limiting lipid oxidation. J Biol Chem 299:105079. - »Bioblast link«


Gao 2022 EBioMedicine CORRECTION.png
3.20 Gao YM, Feng ST, Wen Y, Tang TT, Wang B, Liu BC (2022) Cardiorenal protection of SGLT2 inhibitors-Perspectives from metabolic reprogramming. EBioMedicine 83:104215. - »Bioblast link«


Gatti 2020 Front Pharmacol CORRECTION.png
3.21 Gatti P, Ilamathi HS, Todkar K, Germain M (2020) Mitochondria targeted viral replication and survival strategies-prospective on SARS-CoV-2. Front Pharmacol 11:578599. - »Bioblast link«


Granger 2015 Redox Biol CORRECTION.png
3.22 Granger DN, Kvietys PR (2015) Reperfusion injury and reactive oxygen species: The evolution of a concept. Redox Biol 6:524-551. - »Bioblast link«


Himms-Hagen, Harper 2001 CORRECTION.png
3.23 Himms-Hagen J, Harper ME (2001) Physiological role of UCP3 may be export of fatty acids from mitochondria when fatty acid oxidation predominates: an hypothesis. Exp Biol Med (Maywood) 226:78-84. - »Bioblast link«


Ishii 2012 Front Oncol CORRECTION.png
3.24 Ishii I, Harada Y, Kasahara T (2012) Reprofiling a classical anthelmintic, pyrvinium pamoate, as an anti-cancer drug targeting mitochondrial respiration. Front Oncol 2:137. - »Bioblast link«


Jia 2018 Cells CORRECTION.png
3.25 Jia D, Park JH, Jung KH, Levine H, Kaipparettu BA (2018) Elucidating the metabolic plasticity of cancer: mitochondrial reprogramming and hybrid metabolic states. Cells 7:21. - »Bioblast link«


Jochmanova 2016 Clin Cancer Res CORRECTION.png
3.26 Jochmanova I, Pacak K (2016) Pheochromocytoma: the first metabolic endocrine cancer. Clin Cancer Res 22:5001-11. - »Bioblast link«


Klimova 2008 Cell Death Differ CORRECTION.png
3.27 Klimova T, Chandel NS (2008) Mitochondrial Complex III regulates hypoxic activation of HIF. Cell Death Differ 15:660-6. - »Bioblast link«


Lewis 2019 CORRECTION.png
3.28 Lewis MT, Kasper JD, Bazil JN, Frisbee JC, Wiseman RW (2019) Quantification of mitochondrial oxidative phosphorylation in metabolic disease: application to Type 2 diabetes. Int J Mol Sci 20:5271. - »Bioblast link«


Liu 2009 J Biomed Sci CORRECTION.png
3.29 Liu Y, Schubert DR (2009) The specificity of neuroprotection by antioxidants. J Biomed Sci 16:98. - »Bioblast link«


Ma 2018 Cancer Lett CORRECTION.png
3.30 Ma Y, Temkin SM, Hawkridge AM, Guo C, Wang W, Wang XY, Fang X (2018) Fatty acid oxidation: an emerging facet of metabolic transformation in cancer. Cancer Lett 435:92-100. - »Bioblast link«


Ma 2020 Sci Rep CORRECTION.png
3.31 Ma Y, Wang W, Devarakonda T, Zhou H, Wang XY, Salloum FN, Spiegel S, Fang X (2020) Functional analysis of molecular and pharmacological modulators of mitochondrial fatty acid oxidation. Sci Rep 10:1450. - »Bioblast link«


Merlin 2021 Nat Metab CORRECTION.png
3.32 Merlin J, Ivanov S, Dumont A, Sergushichev A, Gall J, Stunault M, Ayrault M, Vaillant N, Castiglione A, Swain A, Orange F, Gallerand A, Berton T, Martin JC, Carobbio S, Masson J, Gaisler-Salomon I, Maechler P, Rayport S, Sluimer JC, Biessen EAL, Guinamard RR, Gautier EL, Thorp EB, Artyomov MN, Yvan-Charvet L (2021) Non-canonical glutamine transamination sustains efferocytosis by coupling redox buffering to oxidative phosphorylation. Nat Metab 3:1313-26. - »Bioblast link«


Merritt 2020 Rev Endocr Metab Disord CORRECTION.png
3.33 Merritt JL 2nd, MacLeod E, Jurecka A, Hainline B (2020) Clinical manifestations and management of fatty acid oxidation disorders. Rev Endocr Metab Disord 21:479-93. - »Bioblast link«


Mueller 2023 Int J Mol Sci CORRECTION.png
3.34 Müller M, Donhauser E, Maske T, Bischof C, Dumitrescu D, Rudolph V, Klinke A (2023) Mitochondrial integrity is critical in right heart failure development. Int J Mol Sci 24:11108. - »Bioblast link«


Murray 2009 Genome Med CORRECTION.png
3.35 Murray AJ (2009) Metabolic adaptation of skeletal muscle to high altitude hypoxia: how new technologies could resolve the controversies. Genome Med 1:117. - »Bioblast link«


Nussbaum 2005 J Clin Invest CORRECTION.png
3.36 Nussbaum RL (2005) Mining yeast in silico unearths a golden nugget for mitochondrial biology. J Clin Invest 115:2689-91. - »Bioblast link«


Pacifico 2023 Int J Mol Sci CORRECTION.png
3.37 Pacifico F, Leonardi A, Crescenzi E (2023) Glutamine metabolism in cancer stem cells: a complex liaison in the tumor microenvironment. Int J Mol Sci 24:2337. - »Bioblast link«


Pendleton 2023 Front Cell Dev Biol CORRECTION.png
3.38 Pendleton KE, Wang K, Echeverria GV (2023) Rewiring of mitochondrial metabolism in therapy-resistant cancers: permanent and plastic adaptations. Front Cell Dev Biol 11:1254313. - »Bioblast link«


Pharaoh 2023 Geroscience CORRECTION.png
3.39 Pharaoh G, Kamat V, Kannan S, Stuppard RS, Whitson J, Martín-Pérez M, Qian WJ, MacCoss MJ, Villén J, Rabinovitch P, Campbell MD, Sweet IR, Marcinek DJ (2023) The mitochondrially targeted peptide elamipretide (SS-31) improves ADP sensitivity in aged mitochondria by increasing uptake through the adenine nucleotide translocator (ANT). Geroscience https://doi.org/10.1007/s11357-023-00861-y - »Bioblast link«


Picard 2012 Am J Respir Crit Care Med CORRECTION.png
3.40 Picard M, Jung B, Liang F, Azuelos I, Hussain S, Goldberg P, Godin R, Danialou G, Chaturvedi R, Rygiel K, Matecki S, Jaber S, Des Rosiers C, Karpati G, Ferri L, Burelle Y, Turnbull DM, Taivassalo T, Petrof BJ (2012) Mitochondrial dysfunction and lipid accumulation in the human diaphragm during mechanical ventilation. Am J Respir Crit Care Med 186:1140-9. - »Bioblast link«


Polyzos 2017 Mech Ageing Dev CORRECTION.png
3.41 Polyzos AA, McMurray CT (2017) The chicken or the egg: mitochondrial dysfunction as a cause or consequence of toxicity in Huntington's disease. Mech Ageing Dev 161:181-97. - »Bioblast link«


Prasun 2020 J Diabetes Metab Disord CORRECTION.png
3.42 Prasun P (2020) Role of mitochondria in pathogenesis of type 2 diabetes mellitus. J Diabetes Metab Disord 19:2017-22. - »Bioblast link«


Radogna 2021 Methods Mol Biol CORRECTION.png
3.43 Radogna F, Gerard D, Dicato M, Diederich M (2021) Assessment of mitochondrial cell metabolism by respiratory chain electron flow assays. Methods Mol Biol 2276:129-141. - »Bioblast link«


Raimondi 2020 Br J Cancer CORRECTION.png
3.44 Raimondi V, Ciccarese F, Ciminale V (2020) Oncogenic pathways and the electron transport chain: a dangeROS liaison. Br J Cancer 122:168-81. - »Bioblast link«


Rose 2019 Adis CORRECTION.png
3.45 Rose S, Bennuri SC (2019) Mitochondrial metabolism. In: Frye R, Berk M (eds) The therapeutic use of N-acetylcysteine (NAC) in medicine. Adis, Singapore. - »Bioblast link«


Sadri 2023 Function (Oxf) CORRECTION.png
3.46 Sadri S, Zhang X, Audi SH, Cowley AW Jr, Dash RK (2023) Computational modeling of substrate-dependent mitochondrial respiration and bioenergetics in the heart and kidney cortex and outer medulla. Function (Oxf) 4:zqad038. - »Bioblast link«


Shadel 2005 Trends Biochem Sci CORRECTION.png
3.47 Shadel GS (2005) Mitochondrial DNA, aconitase 'wraps' it up. Trends Biochem Sci 30:294-6. - »Bioblast link«


Sivitz 2017 Neuromethods CORRECTION.png
3.48 Sivitz WI (2017) Techniques to investigate bioenergetics of mitochondria. In: Strack S, Usachev Y (eds) Techniques to investigate mitochondrial function in neurons. Neuromethods 123:67-94. - »Bioblast link«


Snyder 2009 Antioxid Redox Signal.png
3.49 Snyder CM, Chandel NS (2009) Mitochondrial regulation of cell survival and death during low-oxygen conditions. Antioxid Redox Signal 11:2673-83. - »Bioblast link«


Speijer 2016 Biochem J CORRECTION.png
3.50 Speijer D (2016) Being right on Q: shaping eukaryotic evolution. Biochem J 473:4103-27. - »Bioblast link«


Vockley 2021 Cambridge Univ Press CORRECTION.png
3.51 Vockley J (2021) Inborn errors of fatty acid oxidation. In: Suchy FS, Sokol RJ, Balistreri WF (eds) Liver disease in children. Cambridge Univ Press:611-27. - »Bioblast link«


Vorotnikov 2022 Biomedicines CORRECTION.png
3.52 Vorotnikov AV, Khapchaev AY, Nickashin AV, Shirinsky VP (2022) In vitro modeling of diabetes impact on vascular endothelium: Are essentials engaged to tune metabolism? Biomedicines 10:3181. - »Bioblast link«


Yang 2021 Springer CORRECTION.png
3.53 Yang Y, Wu Y, Sun XD, Zhang Y (2021) Reactive oxygen species, glucose metabolism, and lipid metabolism. Springer In: Huang C, Zhang Y (eds) Oxidative stress. Springer, Singapore. - »Bioblast link«


Zhang 2021 Cells CORRECTION.png
3.54 Zhang X, Tomar N, Kandel SM, Audi SH, Cowley AW Jr, Dash RK (2021) Substrate- and calcium-dependent differential regulation of mitochondrial oxidative phosphorylation and energy production in the heart and kidney. Cells 11:131. - »Bioblast link«


Zhao 2021 Mol Biomed CORRECTION.png
3.55 Zhao H, Li Y (2021) Cancer metabolism and intervention therapy. Mol Biomed 2:5. - »Bioblast link«


FADH2 ⟶ FAD + H+

Cowan 2019 CNS Neurosci Ther CORRECTION.png
4a.1 Cowan K, Anichtchik O, Luo S (2019) Mitochondrial integrity in neurodegeneration. CNS Neurosci Ther 25:825-36. - »Bioblast link«


FADH2 ⟶ FAD + 2H+

Ahmad 2022 StatPearls CORRECTION.png
4b.1 Ahmad M, Wolberg A, Kahwaji CI (2022) Biochemistry, electron transport chain. StatPearls Publishing StatPearls [Internet]. Treasure Island (FL) - »Bioblast link«


Alston 2017 J Pathol CORRECTION.png
4b.2 Alston CL, Rocha MC, Lax NZ, Turnbull DM, Taylor RW (2017) The genetics and pathology of mitochondrial disease. J Pathol 241:236-50. - »Bioblast link«


Anoar 2021 Front Neurosci CORRECTION.jpg
4b.3 Anoar S, Woodling NS, Niccoli T (2021) Mitochondria dysfunction in frontotemporal dementia/amyotrophic lateral sclerosis: lessons from Drosophila models. Front Neurosci 15:786076. - »Bioblast link«


Chen 2022 Int J Mol Sci CORRECTION.png
4b.4 Chen TH, Koh KY, Lin KM, Chou CK (2022) Mitochondrial dysfunction as an underlying cause of skeletal muscle disorders. Int J Mol Sci 23:12926. - »Bioblast link«


Cojocaru 2023 Antioxidants (Basel) CORRECTION.png
4b.5 Cojocaru KA, Luchian I, Goriuc A, Antoci LM, Ciobanu CG, Popescu R, Vlad CE, Blaj M, Foia LG (2023) Mitochondrial dysfunction, oxidative stress, and therapeutic strategies in diabetes, obesity, and cardiovascular disease. Antioxidants (Basel) 12:658. - »Bioblast link«


Dilliraj 2022 Nutrients CORRECTION.png
4b.6 Dilliraj LN, Schiuma G, Lara D, Strazzabosco G, Clement J, Giovannini P, Trapella C, Narducci M, Rizzo R (2022) The evolution of ketosis: potential impact on clinical conditions. Nutrients 14:3613. - »Bioblast link«


Distelmaier 2009 Brain CORRECTION.png
4b.7 Distelmaier F, Koopman WJ, van den Heuvel LP, Rodenburg RJ, Mayatepek E, Willems PH, Smeitink JA (2009) Mitochondrial complex I deficiency: from organelle dysfunction to clinical disease. Brain 132:833-42. - »Bioblast link«


Egan 2023 Physiol Rev CORRECTION.png
4b.8 Egan B, Sharples AP (2023) Molecular responses to acute exercise and their relevance for adaptations in skeletal muscle to exercise training. Physiol Rev 103:2057-2170. - »Bioblast link«


El-Gammal 2022 Pflugers Arch CORRECTION.png
4b.9 El-Gammal Z, Nasr MA, Elmehrath AO, Salah RA, Saad SM, El-Badri N (2022) Regulation of mitochondrial temperature in health and disease. Pflugers Arch 474:1043-51. - »Bioblast link«


Fahimi 2022 Trends in Chemistry CORRECTION.png
4b.10 Fahimi P, Matta CF (2022) The hot mitochondrion paradox: reconciling theory and experiment. Trends in Chemistry 4:4-20. - »Bioblast link«


Faria 2023 Pharmaceutics CORRECTION.png
4b.11 Faria R, Boisguérin P, Sousa Â, Costa D (2023) Delivery systems for mitochondrial gene therapy: a review. Pharmaceutics 15:572. - »Bioblast link«


Foo 2022 Trends Microbiol CORRECTION.png
4b.12 Foo J, Bellot G, Pervaiz S, Alonso S (2022) Mitochondria-mediated oxidative stress during viral infection. Trends Microbiol 30:679-92. - »Bioblast link«


George 2023 Platelets CORRECTION.png
4b.13 George CE, Saunders CV, Morrison A, Scorer T, Jones S, Dempsey NC (2023) Cold stored platelets in the management of bleeding: is it about bioenergetics? Platelets 34:2188969 - »Bioblast link«


Gopalakrishnan 2020 Sci Rep CORRECTION.png
4b.14 Gopalakrishnan S, Mehrvar S, Maleki S, Schmitt H, Summerfelt P, Dubis AM, Abroe B, Connor TB Jr, Carroll J, Huddleston W, Ranji M, Eells JT (2020) Photobiomodulation preserves mitochondrial redox state and is retinoprotective in a rodent model of retinitis pigmentosa. Sci Rep 10:20382. - »Bioblast link«


Hidalgo-Gutierrez CORRECTION.png
4b.15 Hidalgo-Gutiérrez A, González-García P, Díaz-Casado ME, Barriocanal-Casado E, López-Herrador S, Quinzii CM, López LC (2021) Metabolic targets of coenzyme Q10 in mitochondria. Antioxidants (Basel) 10:520. - »Bioblast link«


Ignatieva 2021 Int J Mol Sci CORRECTION.png
4b.16 Ignatieva E, Smolina N, Kostareva A, Dmitrieva R (2021) Skeletal muscle mitochondria dysfunction in genetic neuromuscular disorders with cardiac phenotype. Int J Mol Sci 22:7349. - »Bioblast link«


Joshi 2022 Biomolecules CORRECTION.png
4b.17 Joshi A, Ito T, Picard D, Neckers L (2022) The mitochondrial HSP90 paralog TRAP1: structural dynamics, interactome, role in metabolic regulation, and inhibitors. Biomolecules 12:880. - »Bioblast link«


Kalainayakan 2018 Cell Biosci CORRECTION.png
4b.18 Kalainayakan SP, FitzGerald KE, Konduri PC, Vidal C, Zhang L (2018) Essential roles of mitochondrial and heme function in lung cancer bioenergetics and tumorigenesis. Cell Biosci 8:56. - »Bioblast link«


Koene 2011 J Inherit Metab Dis CORRECTION.png
4b.19 Koene S, Willems PH, Roestenberg P, Koopman WJ, Smeitink JA (2011) Mouse models for nuclear DNA-encoded mitochondrial complex I deficiency. J Inherit Metab Dis 34:293-307. - »Bioblast link«


Lee 2023 Antioxidants (Basel) CORRECTION.png
4b.20 Lee WE, Genetzakis E, Figtree GA (2023) Novel strategies in the early detection and treatment of endothelial cell-specific mitochondrial dysfunction in coronary artery disease. Antioxidants (Basel) 12:1359. - »Bioblast link«


Lu 2023 Explor Res Hypothesis Med CORRECTION.png
4b.21 Lu F (2023) Hypothetical hydrogenase activity of human mitochondrial Complex I and its role in preventing cancer transformation. Explor Res Hypothesis Med 8:280-5. - »Bioblast link«


Manickam 2022 J Control Release CORRECTION.png
4b.22 Manickam DS (2022) Delivery of mitochondria via extracellular vesicles - a new horizon in drug delivery. J Control Release 343:400-7. - »Bioblast link«


Martell 2023 Nat Commun CORRECTION.png
4b.23 Martell E, Kuzmychova H, Kaul E, Senthil H, Chowdhury SR, Morrison LC, Fresnoza A, Zagozewski J, Venugopal C, Anderson CM, Singh SK, Banerji V, Werbowetski-Ogilvie TE, Sharif T (2023) Metabolism-based targeting of MYC via MPC-SOD2 axis-mediated oxidation promotes cellular differentiation in group 3 medulloblastoma. Nat Commun 14:2502. - »Bioblast link«


Mejia-Vergara 2020 Curr Neurol Neurosci Rep CORRECTION.png
4b.24 Mejia-Vergara AJ, Seleme N, Sadun AA, Karanjia R (2020) Pathophysiology of conversion to symptomatic leber hereditary optic neuropathy and therapeutic implications: a review. Curr Neurol Neurosci Rep 20:11. - »Bioblast link«


Musicco 2023 Int J Mol Sci CORRECTION.png
4b.25 Musicco C, Signorile A, Pesce V, Loguercio Polosa P, Cormio A (2023) Mitochondria deregulations in cancer offer several potential targets of therapeutic interventions. Int J Mol Sci 24:10420. - »Bioblast link«


Nguyen 2021 Brief Bioinform CORRECTION.png
4b.26 Nguyen TT, Nguyen DK, Ou YY (2021) Addressing data imbalance problems in ligand-binding site prediction using a variational autoencoder and a convolutional neural network. Brief Bioinform 22:bbab277. - »Bioblast link«


Payen 2019 Cancer Metastasis Rev CORRECTION.png
4b.27 Payen VL, Zampieri LX, Porporato PE, Sonveaux P (2019) Pro- and antitumor effects of mitochondrial reactive oxygen species. Cancer Metastasis Rev 38:189-203. - »Bioblast link«


Prasuhn 2021 Front Cell Dev Biol CORRECTION.png
4b.28 Prasuhn J, Davis RL, Kumar KR (2021) Targeting mitochondrial impairment in Parkinson's disease: challenges and opportunities. Front Cell Dev Biol 8:615461. - »Bioblast link«


Sainero-Alcolado 2022 Cell Death Differ CORRECTION.png
4b.29 Sainero-Alcolado L, Liaño-Pons J, Ruiz-Pérez MV, Arsenian-Henriksson M (2022) Targeting mitochondrial metabolism for precision medicine in cancer. Cell Death Differ 29:1304-17. - »Bioblast link«


Schniertshauer 2023 Curr Issues Mol Biol CORRECTION.jpg.png
4b.30 Schniertshauer D, Wespel S, Bergemann J (2023) Natural mitochondria targeting substances and their effect on cellular antioxidant system as a potential benefit in mitochondrial medicine for prevention and remediation of mitochondrial dysfunctions. Curr Issues Mol Biol 45:3911-32. - »Bioblast link«


Shields 2021 Front Cell Dev Biol CORRECTION.png
4b.31 Shields HJ, Traa A, Van Raamsdonk JM (2021) Beneficial and detrimental effects of reactive oxygen species on lifespan: a comprehensive review of comparative and experimental studies. Front Cell Dev Biol 9:628157. - »Bioblast link«


Solhaug 2023 Cytotechnology CORRECTION.png
4b.32 Solhaug A, Gjessing M, Sandvik M, Eriksen GS (2023) The gill epithelial cell lines RTgill-W1, from Rainbow trout and ASG-10, from Atlantic salmon, exert different toxicity profiles towards rotenone. Cytotechnology 75:63-75. - »Bioblast link«


Tseng 2022 Cells CORRECTION.png
4b.33 Tseng W-W, Wei A-C (2022) Kinetic mathematical modeling of oxidative phosphorylation in cardiomyocyte mitochondria. Cells 11:4020. - »Bioblast link«


Turton 2021 Expert Opinion Orphan Drugs CORRECTION.png
4b.34 Turton N, Bowers N, Khajeh S, Hargreaves IP, Heaton RA (2021) Coenzyme Q10 and the exclusive club of diseases that show a limited response to treatment. Expert Opinion Orphan Drugs 9:151-60. - »Bioblast link«


Vargas-Mendoza 2021 Life (Basel) CORRECTION.png
4b.35 Vargas-Mendoza N, Angeles-Valencia M, Morales-González Á, Madrigal-Santillán EO, Morales-Martínez M, Madrigal-Bujaidar E, Álvarez-González I, Gutiérrez-Salinas J, Esquivel-Chirino C, Chamorro-Cevallos G, Cristóbal-Luna JM, Morales-González JA (2021) Oxidative stress, mitochondrial function and adaptation to exercise: new perspectives in nutrition. Life (Basel) 11:1269. - »Bioblast link«


Vesga 2021 Med Chem Res CORRECTION.png
4b.36 Vesga LC, Silva AMP, Bernal CC, Mendez-Sánchez SC, Bohórquez ARR (2021) Tetrahydroquinoline/4,5-dihydroisoxazole hybrids with a remarkable effect over mitochondrial bioenergetic metabolism on melanoma cell line B16F10. Med Chem Res 30:2127–43. - »Bioblast link«


Wu 2022 Neuromolecular Med CORRECTION.png
4b.37 Wu Z, Ho WS, Lu R (2022) Targeting mitochondrial oxidative phosphorylation in glioblastoma therapy. Neuromolecular Med 24:18-22. - »Bioblast link«


Yang 2022 J Cleaner Production CORRECTION.png
4b.38 Yang Y, Zhang X, Hu X, Zhao J, Chen X, Wei X, Yu X (2022) Analysis of the differential metabolic pathway of cultured Chlorococcum humicola with hydroquinone toxic sludge extract. J Cleaner Production 370:133486. - »Bioblast link«


Yin 2021 FASEB J CORRECTION.png
4b.39 Yin M, O'Neill LAJ (2021) The role of the electron transport chain in immunity. FASEB J 35:e21974. - »Bioblast link«


FADH2 ⟶ FAD+ (+H+ or +2H+)

FADH2 ⟶ FAD+
Area-Gomez 2019 J Clin Invest CORRECTED.png
5a.1 Area-Gomez E, Guardia-Laguarta C, Schon EA, Przedborski S (2019) Mitochondria, OxPhos, and neurodegeneration: cells are not just running out of gas. J Clin Invest 129:34-45. - »Bioblast link«


Bennett 2022 Nat Rev Mol Cell Biol CORRECTION.png
5a.2 Bennett CF, Latorre-Muro P, Puigserver P (2022) Mechanisms of mitochondrial respiratory adaptation. Nat Rev Mol Cell Biol 23:817-35. - »Bioblast link«


Rinaldo 2002 Annu Rev Physiol CORRECTION.png
5a.3 Bennett MJ, Sheng F, Saada A (2020) Biochemical assays of TCA cycle and β-oxidation metabolites. Methods Cell Biol 155:83-120. - »Bioblast link«


Carriere 2019 Academic Press CORRECTION.png
5a.4 Carriere A, Casteilla L (2019) Role of mitochondria in adipose tissues metabolism and plasticity. Academic Press In: Mitochondria in obesity and type 2 diabetes. Morio B, Pénicaud L, Rigoulet M (eds) Academic Press. - »Bioblast link«


Che 2023 Plant Cell Environ CORRECTION.png
5a.5 Che X, Zhang T, Li H, Li Y, Zhang L, Liu J (2023) Nighttime hypoxia effects on ATP availability for photosynthesis in seagrass. Plant Cell Environ 46:2841-50. - »Bioblast link«


Chi 2022 Biomedicines CORRECTION.png
5a.6 Chi SC, Cheng HC, Wang AG (2022) Leber hereditary optic neuropathy: molecular pathophysiology and updates on gene therapy. Biomedicines 10:1930. - »Bioblast link«


Duan 2019 Aging (Albany NY) CORRECTION.png
5a.7 Duan J, Chen Z, Wu Y, Zhu B, Yang L, Yang C (2019) Metabolic remodeling induced by mitokines in heart failure. Aging (Albany NY) 11:7307-27. - »Bioblast link«


Fisher-Wellman 2012 Trends Endocrinol Metab Fig2 CORRECTION.png
5a.8, 51.9 Fisher-Wellman KH, Neufer PD (2012) Linking mitochondrial bioenergetics to insulin resistance via redox biology. Trends Endocrinol Metab 23:142-53. - »Bioblast link«


Floenes 2022 Front Cell Dev Biol CORRECTION.png
5a.10 Flønes IH, Tzoulis C (2022) Mitochondrial respiratory chain dysfunction-a hallmark pathology of idiopathic Parkinson's disease? Front Cell Dev Biol 10:874596. - »Bioblast link«


Gero 2018 IntechOpen CORRECTION.png
5a.11 Gero D (2023) Hyperglycemia-induced endothelial dysfunction. IntechOpen Chapter 8. - »Bioblast link«


Kikusato 2016 Proc Jpn Soc Anim Nutr Metab CORRECTION.png
5a.12 Kikusato M, Furukawa K, Kamizono, Hakamata Y, Toyomizu M (2016) Roles of mitochondrial oxidative phosphorylation and reactive oxygen species generation in the metabolic modification of avian skeletal muscle. Proc Jpn Soc Anim Nutr Metab 60:57-68. - »Bioblast link«


Knott 2009 Antioxid Redox Signal CORRECTION.png
5a.13 Knott AB, Bossy-Wetzel E (2009) Nitric oxide in health and disease of the nervous system. Antioxid Redox Signal 11:541-54. - »Bioblast link«


Kraegen 2008 Proc Natl Acad Sci U S A CORRECTION.png
5a.14 Kraegen EW, Cooney GJ, Turner N (2008) Muscle insulin resistance: a case of fat overconsumption, not mitochondrial dysfunction. Proc Natl Acad Sci U S A 105:7627-8. - »Bioblast link«


Lettieri-Barbato 2019 Mol Metab CORRECTION.png
5a.15 Lettieri-Barbato D (2019) Redox control of non-shivering thermogenesis. Mol Metab 25:11-9. - »Bioblast link«


Loussouarn 2021 Front Immunol CORRECTION.png
5a.16 Loussouarn C, Pers YM, Bony C, Jorgensen C, Noël D (2021) Mesenchymal stromal cell-derived extracellular vesicles regulate the mitochondrial metabolism via transfer of miRNAs. Front Immunol 12:623973. - »Bioblast link«


Mracek 2013 Biochim Biophys Acta CORRECTION.png
5a.17 Mracek T, Drahota Z, Houstek J (2013) The function and the role of the mitochondrial glycerol-3-phosphate dehydrogenase in mammalian tissues. Biochim Biophys Acta 1827:401-10. - »Bioblast link«


Onukwufor 2022 Antioxidants (Basel) CORRECTION.png
5a.18 Onukwufor JO, Dirksen RT, Wojtovich AP (2022) Iron dysregulation in mitochondrial dysfunction and Alzheimer's disease. Antioxidants (Basel) 11:692. - »Bioblast link«


Perouansky 2023 Exp Biol Med (Maywood) CORRECTION.png
5a.19 Perouansky M, Johnson-Schlitz D, Sedensky MM, Morgan PG (2023) A primordial target: Mitochondria mediate both primary and collateral anesthetic effects of volatile anesthetics. Exp Biol Med (Maywood) 248:545-52. - »Bioblast link«


Rinaldo 2002 Annu Rev Physiol CORRECTION.png
5a.20 Rinaldo P, Matern D, Bennett MJ (2002) Fatty acid oxidation disorders. Annu Rev Physiol 64:477-502. - »Bioblast link«
Copied: Bennett MJ, Sheng F, Saada A (2020) Biochemical assays of TCA cycle and β-oxidation metabolites. Methods Cell Biol 155:83-120. - »Bioblast link«


Sacchetto 2019 J Clin Med CORRECTION.png
5a.21 Sacchetto C, Sequeira V, Bertero E, Dudek J, Maack C, Calore M (2019) Metabolic alterations in inherited cardiomyopathies. J Clin Med 8:2195. - »Bioblast link«


Schinagl 2016 PLoS One CORRECTION.png
5a.22 Schinagl CW, Vrabl P, Burgstaller W (2016) Adapting high-resolution respirometry to glucose-limited steady state mycelium of the filamentous fungus Penicillium ochrochloron: method development and standardisation. PLoS One 11:e0146878. - »Bioblast link«


Schottlender 2021 Biomolecules CORRECTION.png
5a.23 Schottlender N, Gottfried I, Ashery U (2021) Hyperbaric oxygen treatment: effects on mitochondrial function and oxidative stress. Biomolecules 11:1827. - »Bioblast link«


Shirakawa 2023 Sci Rep CORRECTION.png
5a.24 Shirakawa R, Nakajima T, Yoshimura A, Kawahara Y, Orito C, Yamane M, Handa H, Takada S, Furihata T, Fukushima A, Ishimori N, Nakagawa M, Yokota I, Sabe H, Hashino S, Kinugawa S, Yokota T (2023) Enhanced mitochondrial oxidative metabolism in peripheral blood mononuclear cells is associated with fatty liver in obese young adults. Sci Rep 13:5203. - »Bioblast link«
While CI functions as a proton pump, CII does not. Depicting CII as a proton pump would be analogous to falsely portraying FADH2 as the substrate of CII, as if it were a copy of CI, which functions as a proton pump with NADH as its substrate.


Sullivan 2014 Cell Cycle CORRECTION.png
5a.25 Sullivan LB, Chandel NS (2014) Mitochondrial metabolism in TCA cycle mutant cancer cells. Cell Cycle 13:347-8. - »Bioblast link«


Tanaka 2022 Cells CORRECTED.png
5a.26 Tanaka M, Szabó Á, Spekker E, Polyák H, Tóth F, Vécsei L (2022) Mitochondrial impairment: a common motif in neuropsychiatric presentation? The link to the tryptophan-kynurenine metabolic system. Cells 11:2607. - »Bioblast link«


Valle-Mendiola 2020 Cancers (Basel) CORRECTION.png
5a.27 Valle-Mendiola A, Soto-Cruz I (2020) Energy metabolism in cancer: The roles of STAT3 and STAT5 in the regulation of metabolism-related genes. Cancers (Basel) 12:124. - »Bioblast link«


Vartak 2013 Protein Cell CORRECTION.png
5a.28 Vartak R, Porras CA, Bai Y (2013) Respiratory supercomplexes: structure, function and assembly. Protein Cell 4:582-90. - »Bioblast link«


Wang 2019 Trends Biochem Sci CORRECTION.png
5a.29 Wang K, Jiang J, Lei Y, Zhou S, Wei Y, Huang C (2019) Targeting metabolic-redox circuits for cancer therapy. Trends Biochem Sci 44:401-14. - »Bioblast link«


Wang 2023 Biomolecules CORRECTION.png
5a.30 Wang R, Liang L, Matsumoto M, Iwata K, Umemura A, He F (2023) Reactive oxygen species and NRF2 signaling, friends or foes in cancer? Biomolecules 13:353. - »Bioblast link«


Zhao 2021 Trends Cancer CORRECTION.png
5a.31 Zhao H, Swanson KD, Zheng B (2021) Therapeutic repurposing of biguanides in cancer. Trends Cancer 7:714-30. - »Bioblast link«


FADH2 ⟶ FAD+ + H+
Lima 2021 Nat Metab CORRECTION.png
5b.1 Lima A, Lubatti G, Burgstaller J, Hu D, Green AP, Di Gregorio A, Zawadzki T, Pernaute B, Mahammadov E, Perez-Montero S, Dore M, Sanchez JM, Bowling S, Sancho M, Kolbe T, Karimi MM, Carling D, Jones N, Srinivas S, Scialdone A, Rodriguez TA (2021) Cell competition acts as a purifying selection to eliminate cells with mitochondrial defects during early mouse development. Nat Metab 3:1091-108. - »Bioblast link«


Liu 2020 Am J Physiol Heart Circ Physiol CORRECTION.png
5b.2 Liu R, Jagannathan R, Sun L, Li F, Yang P, Lee J, Negi V, Perez-Garcia EM, Shiva S, Yechoor VK, Moulik M (2020) Tead1 is essential for mitochondrial function in cardiomyocytes. Am J Physiol Heart Circ Physiol 319:H89-99. - »Bioblast link«


FADH2 ⟶ FAD+ + 2H+
Bratic 2013 J Clin Invest CORRECTION.png
5c.1 Bratic A, Larsson NG (2013) The role of mitochondria in aging. J Clin Invest 123:951-7. - »Bioblast link«


Brischigliaro 2021 Biochim Biophys Acta Bioenerg CORRECTION.png
5c.2 Brischigliaro M, Zeviani M (2021) Cytochrome c oxidase deficiency. Biochim Biophys Acta Bioenerg 1862:148335. - »Bioblast link«


Cerqua 2021 Springer Cham CORRECTION.png
5c.3 Cerqua C, Buson L, Trevisson E (2021) Mutations in assembly dactors required for the biogenesis of mitochondrial respiratory chain. Springer, Cham In: Navas P, Salviati L (eds) Mitochondrial diseases. - »Bioblast link«


DeBalsi 2017 Ageing Res Rev CORRECTION.png
5c.4 DeBalsi KL, Hoff KE, Copeland WC (2017) Role of the mitochondrial DNA replication machinery in mitochondrial DNA mutagenesis, aging and age-related diseases. Ageing Res Rev 33:89-104. - »Bioblast link«


Gallinat 2022 Int J Mol Sci CORRECTION.png
5c.5 Gallinat A, Vilahur G, Padró T, Badimon L (2022) Network-assisted systems biology analysis of the mitochondrial proteome in a pre-clinical model of ischemia, revascularization and post-conditioning. Int J Mol Sci 23:2087. - »Bioblast link«


Glombik 2021 Cells CORRECTION.png
5c.6 Głombik K, Detka J, Budziszewska B (2021) Hormonal regulation of oxidative phosphorylation in the brain in health and disease. Cells 10:2937. - »Bioblast link«


Keidar 2023 Front Physiol CORRECTION.png
5c.7 Keidar N, Peretz NK, Yaniv Y (2023) Ca2+ pushes and pulls energetics to maintain ATP balance in atrial cells: computational insights. Front Physiol 14:1231259. - »Bioblast link«


FADH2 ⟶ FAD2+
Yan 2014 J Diabetes Res CORRECTION.png
5d.1 Yan LJ (2014) Pathogenesis of chronic hyperglycemia: from reductive stress to oxidative stress. J Diabetes Res 2014:137919. - »Bioblast link«


FADH2 ⟶ FADH or FADH+

FADH2 ⟶ FADH
Cadonic 2016 Mol Neurobiol CORRECTION.png
6a.1 Cadonic C, Sabbir MG, Albensi BC (2016) Mechanisms of mitochondrial dysfunction in Alzheimer's disease. Mol Neurobiol 53:6078-90. - »Bioblast link«


Kezic 2016 Oxid Med Cell Longev CORRECTION.png
6a.2 Kezic A, Spasojevic I, Lezaic V, Bajcetic M (2016) Mitochondria-targeted antioxidants: future perspectives in kidney ischemia reperfusion injury. Oxid Med Cell Longev 2016:2950503. - »Bioblast link«


Li 2013 J Hematol Oncol CORRECTION.png
6a.3 Li X, Fang P, Mai J, Choi ET, Wang H, Yang XF (2013) Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. J Hematol Oncol 6:19. - »Bioblast link«


Liskova 2021 Int J Mol Sci CORRECTION.png
6a.4 Liskova A, Samec M, Koklesova L, Kudela E, Kubatka P, Golubnitschaja O (2021) Mitochondriopathies as a clue to systemic disorders-analytical tools and mitigating measures in context of predictive, preventive, and personalized (3P) medicine. Int J Mol Sci 22:2007. - »Bioblast link«


Sander 2022 Rev Med Virol CORRECTION.png
6a.5 Sander WJ, Fourie C, Sabiu S, O'Neill FH, Pohl CH, O'Neill HG (2022) Reactive oxygen species as potential antiviral targets. Rev Med Virol 32:e2240. - »Bioblast link«


Steiner 2017 Int J Biochem Cell Biol CORRECTION.png
6a.6 Steiner JL, Lang CH (2017) Etiology of alcoholic cardiomyopathy: Mitochondria, oxidative stress and apoptosis. Int J Biochem Cell Biol 89:125-35. - »Bioblast link«


Tabassum 2020 J Biomed Res Environ Sci CORRECTION.png
6a.7 Tabassum N, Kheya IS, Ibn Asaduzzaman SA, Maniha SM, Fayz AH, Zakaria A, Fayz AH, Zakaria A, Noor R (2020) A review on the possible leakage of electrons through the electron transport chain within mitochondria. J Biomed Res Environ Sci 1:105-13. - »Bioblast link«


Yang 2020 Transl Neurodegener CORRECTION.png
6a.8 Yang L, Youngblood H, Wu C, Zhang Q (2020) Mitochondria as a target for neuroprotection: role of methylene blue and photobiomodulation. Transl Neurodegener 9:19. - »Bioblast link«


Yu 2023 Antioxidants (Basel) CORRECTION.png
6a.9 Yu T, Wang L, Zhang L, Deuster PA (2023) Mitochondrial fission as a therapeutic target for metabolic diseases: insights into antioxidant strategies. Antioxidants (Basel) 12:1163. - »Bioblast link«


FADH2 ⟶ FADH +H+
Burgin 2020 FEBS Lett CORRECTION.png
6b.1 Burgin HJ, McKenzie M (2020) Understanding the role of OXPHOS dysfunction in the pathogenesis of ECHS1 deficiency. FEBS Lett 594:590-610. - »Bioblast link«


FADH2 ⟶ FADH+
Achreja 2022 Nat Metab CORRECTION.png
6c.1 Achreja A, Yu T, Mittal A, Choppara S, Animasahun O, Nenwani M, Wuchu F, Meurs N, Mohan A, Jeon JH, Sarangi I, Jayaraman A, Owen S, Kulkarni R, Cusato M, Weinberg F, Kweon HK, Subramanian C, Wicha MS, Merajver SD, Nagrath S, Cho KR, DiFeo A, Lu X, Nagrath D (2022) Metabolic collateral lethal target identification reveals MTHFD2 paralogue dependency in ovarian cancer. Nat Metab 4:1119-37. - »Bioblast link«


Torres 2017 Cell Metab CORRECTION.png
6c.2 Torres MJ, Kew KA, Ryan TE, Pennington ER, Lin CT, Buddo KA, Fix AM, Smith CA, Gilliam LA, Karvinen S, Lowe DA, Spangenburg EE, Zeczycki TN, Shaikh SR, Neufer PD (2018) 17β-estradiol directly lowers mitochondrial membrane microviscosity and improves bioenergetic function in skeletal muscle. Cell Metab 27:167-79. - »Bioblast link«


FADH or FADH+

Johnson 2013 Eukaryot Cell CORRECTION.png
7a.1 Johnson X, Alric J (2013) Central carbon metabolism and electron transport in Chlamydomonas reinhardtii: metabolic constraints for carbon partitioning between oil and starch. Eukaryot Cell 12:776-93. - »Bioblast link«


Kuznetsov 2022 Antioxidants (Basel) CORRECTION.png
7a.2 Kuznetsov AV, Margreiter R, Ausserlechner MJ, Hagenbuchner J (2022) The complex interplay between mitochondria, ROS and entire cellular metabolism. Antioxidants (Basel) 11:1995. - »Bioblast link«


FADH ⟶ FAD
Diaz 2023 Front Mol Biosci CORRECTION.png
7b.1 Diaz EC, Adams SH, Weber JL, Cotter M, Børsheim E (2023) Elevated LDL-C, high blood pressure, and low peak V˙O2 associate with platelet mitochondria function in children-The Arkansas Active Kids Study. Front Mol Biosci 10:1136975. - »Bioblast link«


Jezek 2023 Antioxid Redox Signal CORRECTION.png
7b.2 Ježek P, Jabůrek M, Holendová B, Engstová H, Dlasková A (2023) Mitochondrial cristae morphology reflecting metabolism, superoxide formation, redox homeostasis, and pathology. Antioxid Redox Signal. https://doi.org/10.1089/ars.2022.0173 - »Bioblast link«


FADH ⟶ FAD+
Grasso 2020 Cell Stress CORRECTION.png
7c.1 Grasso D, Zampieri LX, Capelôa T, Van de Velde JA, Sonveaux P (2020) Mitochondria in cancer. Cell Stress 4:114-46. - »Bioblast link«


Middleton 2021 Therap Adv CORRECTION.png
7c.2 Middleton P, Vergis N (2021) Mitochondrial dysfunction and liver disease: role, relevance, and potential for therapeutic modulation. Therap Adv Gastroenterol 14:17562848211031394. - »Bioblast link«


Moudgil 2005 J Appl Physiol (1985) CORRECTION.png
7c.3 Moudgil R, Michelakis ED, Archer SL (2005) Hypoxic pulmonary vasoconstriction. J Appl Physiol (1985) 98:390-403. - »Bioblast link«


FADH ⟶ FAD+ +H+
Puntel 2013 Toxicol In Vitro CORRECTION.png
7d.1 Puntel RL, Roos DH, Seeger RL, Rocha JB (2013) Mitochondrial electron transfer chain complexes inhibition by different organochalcogens. Toxicol In Vitro 27:59-70. - »Bioblast link«


FADH ⟶ FAD +2H+
Xing 2022 Atlantis Press CORRECTION.png
7e.1 Xing Yunxie (2022) Is genome instability a significant cause of aging? A review. Atlantis Press. - »Bioblast link«


FADH+ ⟶ FAD
Catania 2019 Orphanet J Rare Dis CORRECTION.png
7f.1 Catania A, Iuso A, Bouchereau J, Kremer LS, Paviolo M, Terrile C, Bénit P, Rasmusson AG, Schwarzmayr T, Tiranti V, Rustin P, Rak M, Prokisch H, Schiff M (2019) Arabidopsis thaliana alternative dehydrogenases: a potential therapy for mitochondrial complex I deficiency? Perspectives and pitfalls. Orphanet J Rare Dis 14:236. - »Bioblast link«


FAD or FAD+ ⟶ or other

FAD ⟶
Ahmad 2017 Springer, Cham CORRECTION.png
8a.1 Ahmad G, Almasry M, Dhillon AS, Abuayyash MM, Kothandaraman N, Cakar Z (2017) Overview and sources of reactive oxygen species (ROS) in the reproductive system. In: Agarwal A, et al (eds) Oxidative stress in human reproduction. Springer, Cham. - »Bioblast link«


Irazabal 2020 Cells CORRECTION.png
8a.2 Irazabal MV, Torres VE (2020) Reactive oxygen species and redox signaling in chronic kidney disease. Cells 9:1342. - »Bioblast link«


LaMoia 2022 Proc Natl Acad Sci U S A CORRECTION.png
8a.3 LaMoia TE, Butrico GM, Kalpage HA, Goedeke L, Hubbard BT, Vatner DF, Gaspar RC, Zhang XM, Cline GW, Nakahara K, Woo S, Shimada A, Hüttemann M, Shulman GI (2022) Metformin, phenformin, and galegine inhibit complex IV activity and reduce glycerol-derived gluconeogenesis. Proc Natl Acad Sci U S A 119:e2122287119. - »Bioblast link«


FAD+ ⟶ FADH2
Chinopoulos 2013 J Neurosci Res CORRECTION.png
8b.1 Chinopoulos C (2013) Which way does the citric acid cycle turn during hypoxia? The critical role of α-ketoglutarate dehydrogenase complex. J Neurosci Res 91:1030-43. - »Bioblast link«


FADH2+ Succinate ⟶ Fumarate +2H+
Andrieux 2021 Int J Mol Sci CORRECTION.png
8c.1 Andrieux P, Chevillard C, Cunha-Neto E, Nunes JPS (2021) Mitochondria as a cellular hub in infection and inflammation. Int J Mol Sci 22:11338. - »Bioblast link«


FADH2 ⟶ CI ⟶ CII
Huss 2005 J Clin Invest CORRECTION.png
8d.1 Huss JM, Kelly DP (2005) Mitochondrial energy metabolism in heart failure: a question of balance. J Clin Invest 115:547-55. - »Bioblast link«


ETF ⟶ CII
Bugarski 2018 Am J Physiol Renal Physiol CORRECTION.png
8e.1 Bugarski M, Martins JR, Haenni D, Hall AM (2018) Multiphoton imaging reveals axial differences in metabolic autofluorescence signals along the kidney proximal tubule. Am J Physiol Renal Physiol 315:F1613-25. - »Bioblast link«


Supplement: FADH2 or FADH as substrate of CII in websites

Complex II ambiguities in graphical representations on FADH2 as a substrate of Complex II in the canonical forward electron transfer. FADH → FAD+H (g), FADH2 → FAD+2H+ (a’, c, h-n), and FADH2 → FAD (a, b, d-f, o-θ) should be corrected to FADH2 → FAD (Eq. 3b). NADH → NAD+ is frequently written in graphs without showing the H+ on the left side of the arrow, except for (p-r). NADH → NAD++H+ (a-g, m), NADH → NAD++2H+ (h-l), NADH+H+ → NAD++2H+ (j, k), and NADH → NAD (ι) should be corrected to NADH+H+ → NAD+ (Eq. 3a). (Retrieved 2023-03-21 to 2023-05-04).
OpenStax Biology.png
(a)
Website 1 (a,b): OpenStax Biology - Fig. 7.10 Oxidative phosphorylation (CC BY 3.0). - OpenStax Biology got it wrong in figures and text. The error is copied without quality assessment and propagated in several links.
Website 2 (a,b): Concepts of Biology - 1st Canadian Edition by Charles Molnar and Jane Gair - Fig. 4.19a
Website 3 (a,b): Pharmaguideline
Website 4 (a,b): Texas Gateway - Figure 7.11
Website 5 (a,b): - CUNY
Website 6 (a,b): lumen Biology for Majors I - Fig. 1
Website 7 (a): LibreTexts Biology Oxidative Phosphorylation - Electron Transport Chain - Figure 7.11.1
Website 8 (a): - Brain Brooder
Khan Academy modified from OpenStax CORRECTION.png
(a’)
Website 9 (a’,b,v): Khan Academy - Image modified from "Oxidative phosphorylation: Figure 1", by OpenStax College, Biology (CC BY 3.0). Figure and text underscore the FADH2-error: "FADH2 .. feeds them (electrons) into the transport chain through complex II."
Website 10 (a’,b,v): Saylor Academy
Expii OpenStax CORRECTION.png
(b)
Website 1 (a,b): OpenStax Biology - Fig. 7.12
Website 2 (a,b): Concepts of Biology - 1st Canadian Edition by Charles Molnar and Jane Gair - Fig. 4.19c
Website 3 (a,b): Pharmaguideline
Website 4 (a,b): Texas Gateway - Figure 7.13
Website 5 (a,b): - CUNY
Website 6 (a,b): lumen Biology for Majors I - Fig. 3
Website 9 (a’,b,v): Khan Academy - Image modified from "Oxidative phosphorylation: Figure 3," by Openstax College, Biology (CC BY 3.0)
Website 10 (a’,b,v): Saylor Academy
Website 11 (b,c,n,w,β): expii - Image source: By CNX OpenStax
Biologydictionary.net CORRECTION.png
(c)
Website 11 (b,c,n,w,β): expii - Image source: By CNX OpenStax
Website 12 (c,t): ThoughtCo - extender01 / iStock / Getty Images Plus
Website 13 (c): wikimedia 30148497 - Anatomy & Physiology, Connexions Web site. http://cnx.org/content/col11496/1.6/, 2013-06-19
Website 14 (c): biologydictionary.net 2018-08-21
Website 15 (c): Quora
Website 16 (c): TeachMePhysiology - Fig. 1. 2023-03-13
Website 17 (c): toppr
Labxchange CORRECTION.png
(d)
Website 18 (d): Labxchange - Figure 8.15 credit: modification of work by Klaus Hoffmeier
Jack Westin CORRECTION.png
(e)
Website 19 (e): Jack Westin MCAT Courses
Videodelivery CORRECTION.png
(f)
Website 20 (f): videodelivery
SparkNotes CORRECTION.png
(g)
Website 21 (g): - SparkNotes
Researchtweet CORRECTION.png
(h)
Website 22 (h,t): researchtweet
Website 23 (h): Microbe Notes
FlexBooks 2 0 CORRECTION.png
(i)
Website 24 (i): FlexBooks - CK-12 Biology for High School- 2.28 Electron Transport, Figure 2
Labster Theory CORRECTION.png
(j)
Website 25 (j): Labster Theory
Nau.edu CORRECTION.png
(k)
Website 26 (k): nau.edu
ScienceFacts CORRECTION.png
(l)
Website 27 (l): ScienceFacts
Ck12 CORRECTION.png
(m)
Website 28 (m): cK-12
Wikimedia ETC CORRECTION.png
(n)
Website 11 (b,c,n,w,β): expii - Image source: By CNX OpenStax
Website 29 (n): Wikimedia
Creative-biolabs CORRECTION.png
(o)
Website 30 (o): creative-biolabs
Vector Mine CORRECTION.png
(p)
Website 31 (p): dreamstime
Website 32 (p): VectorMine
YouTube Dirty Medicine Biochemistry CORRECTION.png
(q)
Website 33: YouTube Dirty Medicine Biochemistry - Uploaded 2019-07-18
DBriers CORRECTION.png
(r)
Website 34 (r): DBriers
SNC1D CORRECTION.png
(s)
Website 35 (s): SNC1D - BIOLOGY LESSON PLAN BLOG
ThoughtCo-Getty Images CORRECTION.png
(t)
Website 12 (c,t): ThoughtCo - extender01 / iStock / Getty Images Plus
Website 22 (h,t): researchtweet
Website 36 (t): dreamstime
Hyperphysics CORRECTION.png
(u)
Website 37 (u): hyperphysics
Khan Academy CORRECTION.png
(v)
Website 9 (a’,b,v): Khan Academy
Website 10 (a’,b,v): Saylor Academy
Expii-Whitney, Rolfes 2002 CORRECTION.png
(w)
Website 11 (b,c,n,w,β): expii - Whitney, Rolfes 2002
UrbanPro CORRECTION.png
(x)
Website 38 (x): UrbanPro
Quizlet CORRECTION.png
(y)
Website 39 (y): Quizlet
Unm.edu CORRECTION.png
(z)
Website 40 (z): unm.edu
YouTube sciencemusicvideos CORRECTION.png
(α)
Website 41 (α): YouTube sciencemusicvideos - Uploaded 2014-08-19
Expii-Gabi Slizewska CORRECTION.png
(β)
Website 11 (b,c,n,w,β): expii expii - Image source: By Gabi Slizewska
BiochemDen CORRECTION.png
(γ)
Website 42 (γ): BiochemDen.com
Hopes CORRECTION.png
(δ)
Website 43 (δ): hopes, Huntington’s outreach project for education, at Stanford
Studocu CORRECTION.png
(ε)
Website 44 (ε): [ https://www.studocu.com/en-gb/document/university-college-london/mammalian-physiology/electron-transport-chain/38063777 studocu, University College London]
ScienceDirect CORRECTION.png
(ζ)
Website 45 (ζ): ScienceDirect
BBC BITESIZE CORRECTION.png
(η)
Website 46 (η): BBC BITESIZE cK-12
Freepik CORRECTION.png
(θ)
Website 47 (θ): freepik
LibreTexts Chemistry CORRECTION.png
(ι)
Website 48 (ι): - LibreTexts Chemistry - The Citric Acid Cycle and Electron Transport – Fig. 12.4.3
Stillway LW CORRECTION.png
xx Stillway L William (2017) CHAPTER 9 Bioenergetics and Oxidative Metabolism. In: Medical Biochemistry



FAO and CII ambiguitiy

Balasubramaniam 2020 J Transl Genet Genom CORRECTION.png
1.4 Balasubramaniam S, Yaplito-Lee J (2020) Riboflavin metabolism: role in mitochondrial function. J Transl Genet Genom 4:285-306. - »Bioblast link«


Bertero 2018 Nat Rev Cardiol CORRECTION.png
xx Bertero E, Maack C (2018) Metabolic remodelling in heart failure. Nat Rev Cardiol 15:457-70. - »Bioblast link«


Bugarski 2018 Am J Physiol Renal Physiol CORRECTION.png
xx Bugarski M, Martins JR, Haenni D, Hall AM (2018) Multiphoton imaging reveals axial differences in metabolic autofluorescence signals along the kidney proximal tubule. Am J Physiol Renal Physiol 315:F1613-25. - »Bioblast link«


Cortassa 2019 Front Physiol CORRECTION.png
xx Cortassa S, Aon MA, Sollott SJ (2019) Control and regulation of substrate selection in cytoplasmic and mitochondrial catabolic networks. A systems biology analysis. Front Physiol 10:201. - »Bioblast link«


DiMauro 2003 N Engl J Med CORRECTION.png
xx DiMauro S, Schon EA (2003) Mitochondrial respiratory-chain diseases. N Engl J Med 348:2656-68. - »Bioblast link«


Esparza-Molto 2020 Antioxid Redox Signal CORRECTION.png
xx Esparza-Moltó PB, Cuezva JM (2020) Reprogramming oxidative phosphorylation in cancer: a role for RNA-binding proteins. Antioxid Redox Signal 33:927-45. - »Bioblast link«


Frangos 2023 J Biol Chem CORRECTION.png
xx Frangos SM, DesOrmeaux GJ, Holloway GP (2023) Acidosis attenuates CPT-I supported bioenergetics as a potential mechanism limiting lipid oxidation. J Biol Chem 299:105079. - »Bioblast link«


Hinder 2019 Sci Rep CORRECTION.png
xx Hinder LM, Sas KM, O'Brien PD, Backus C, Kayampilly P, Hayes JM, Lin CM, Zhang H, Shanmugam S, Rumora AE, Abcouwer SF, Brosius FC 3rd, Pennathur S, Feldman EL (2019) Mitochondrial uncoupling has no effect on microvascular complications in type 2 diabetes. Sci Rep 9:881. - »Bioblast link«


Huss 2005 J Clin Invest CORRECTION.png
xx Huss JM, Kelly DP (2005) Mitochondrial energy metabolism in heart failure: a question of balance. J Clin Invest 115:547-55. - »Bioblast link«


Kikusato 2016 Proc Jpn Soc Anim Nutr Metab CORRECTION.png
xx Kikusato M, Furukawa K, Kamizono T, Hakamata Y, Toyomizu M (2016) Roles of mitochondrial oxidative phosphorylation and reactive oxygen species generation in the metabolic modification of avian skeletal muscle. Proc Jpn Soc Anim Nutr Metab 60:57-68. - »Bioblast link«


Kraegen 2008 Proc Natl Acad Sci U S A CORRECTION.png
xx Kraegen EW, Cooney GJ, Turner N (2008) Muscle insulin resistance: a case of fat overconsumption, not mitochondrial dysfunction. Proc Natl Acad Sci U S A 105:7627-8. - »Bioblast link«


Loussouarn 2021 Front Immunol CORRECTION.png
xx Loussouarn C, Pers YM, Bony C, Jorgensen C, Noël D (2021) Mesenchymal stromal cell-derived extracellular vesicles regulate the mitochondrial metabolism via transfer of miRNAs. Front Immunol 12:623973. - »Bioblast link«


Ma 2018 Cancer Lett CORRECTION.png
xx Ma Y, Temkin SM, Hawkridge AM, Guo C, Wang W, Wang XY, Fang X (2018) Fatty acid oxidation: an emerging facet of metabolic transformation in cancer. Cancer Lett 435:92-100. - »Bioblast link«


Ma 2020 Sci Rep CORRECTION.png
xx Ma Y, Wang W, Devarakonda T, Zhou H, Wang XY, Salloum FN, Spiegel S, Fang X (2020) Functional analysis of molecular and pharmacological modulators of mitochondrial fatty acid oxidation. Sci Rep 10:1450. - »Bioblast link«


Massart 2013 Curr Pathobiol Rep CORRECTION.png
xx Massart J, Begriche K, Buron N, Porceddu M, Borgne-Sanchez A, Fromenty B (2013) Drug-induced inhibition of mitochondrial fatty acid oxidation and steatosis. Curr Pathobiol Rep 1:147–57. - »Bioblast link«


Merritt 2020 Rev Endocr Metab Disord CORRECTION.png
xx Merritt JL 2nd, MacLeod E, Jurecka A, Hainline B (2020) Clinical manifestations and management of fatty acid oxidation disorders. Rev Endocr Metab Disord 21:479-93. - »Bioblast link«


Murray 2009 Genome Med CORRECTION.png
xx Murray AJ (2009) Metabolic adaptation of skeletal muscle to high altitude hypoxia: how new technologies could resolve the controversies. Genome Med 1:117. - »Bioblast link«


Picard 2012 Am J Respir Crit Care Med CORRECTION.png
xx Picard M, Jung B, Liang F, Azuelos I, Hussain S, Goldberg P, Godin R, Danialou G, Chaturvedi R, Rygiel K, Matecki S, Jaber S, Des Rosiers C, Karpati G, Ferri L, Burelle Y, Turnbull DM, Taivassalo T, Petrof BJ (2012) Mitochondrial dysfunction and lipid accumulation in the human diaphragm during mechanical ventilation. Am J Respir Crit Care Med 186:1140-9. - »Bioblast link«


Picard 2018 Biol Psychiatry CORRECTION.png
xx Picard M, McEwen BS (2018) Psychological stress and mitochondria: a systematic review. Psychosom Med 80:141-53. - »Bioblast link«
xx Copied by: Picard M, Prather AA, Puterman E, Cuillerier A, Coccia M, Aschbacher K, Burelle Y, Epel ES (2018) A mitochondrial health index sensitive to mood and caregiving stress. Biol Psychiatry 84:9-17. - »Bioblast link«
xx Copied by: Karan KR, Trumpff C, McGill MA, Thomas JE, Sturm G, Lauriola V, Sloan RP, Rohleder N, Kaufman BA, Marsland AL, Picard M (2020) Mitochondrial respiratory capacity modulates LPS-induced inflammatory signatures in human blood. Brain Behav Immun Health 5:100080. - »Bioblast link«
xx Copied by: Bindra S, McGill MA, Triplett MK, Tyagi A, Thaker PH, Dahmoush L, Goodheart MJ, Ogden RT, Owusu-Ansah E, R Karan K, Cole S, Sood AK, Lutgendorf SK, Picard M (2021) Mitochondria in epithelial ovarian carcinoma exhibit abnormal phenotypes and blunted associations with biobehavioral factors. Sci Rep 11:11595. - »Bioblast link«
xx Copied by: Rausser S, Trumpff C, McGill MA, Junker A, Wang W, Ho SH, Mitchell A, Karan KR, Monk C, Segerstrom SC, Reed RG, Picard M (2021) Mitochondrial phenotypes in purified human immune cell subtypes and cell mixtures. Elife 10:e70899. - »Bioblast link«


Prasun 2020 J Diabetes Metab Disord CORRECTION.png
xx Prasun P (2020) Role of mitochondria in pathogenesis of type 2 diabetes mellitus. J Diabetes Metab Disord 19:2017-22. - »Bioblast link«


Rinaldo 2002 Annu Rev Physiol CORRECTION.png
xx Rinaldo P, Matern D, Bennett MJ (2002) Fatty acid oxidation disorders. Annu Rev Physiol 64:477-502. - »Bioblast link«
xx Bennett MJ, Sheng F, Saada A (2020) Biochemical assays of TCA cycle and β-oxidation metabolites. Methods Cell Biol 155:83-120. - »Bioblast link«


Toleikis 2020 Cells CORRECTION.png
xx Toleikis A, Trumbeckaite S, Liobikas J, Pauziene N, Kursvietiene L, Kopustinskiene DM (2020) Fatty acid oxidation and mitochondrial morphology changes as key modulators of the affinity for ADP in rat heart mitochondria. Cells 9:340. - »Bioblast link«


Vockley 2021 Cambridge Univ Press CORRECTION.png
xx Vockley J (2021) Inborn errors of fatty acid oxidation. In: Suchy FS, Sokol RJ, Balistreri WF (eds) Liver disease in children. Cambridge Univ Press:611-27. https://doi.org/10.1017/9781108918978.034 - »Bioblast link«


Zhang 2021 Cells CORRECTION.png
xx Zhang X, Tomar N, Kandel SM, Audi SH, Cowley AW Jr, Dash RK (2021) Substrate- and calcium-dependent differential regulation of mitochondrial oxidative phosphorylation and energy production in the heart and kidney. Cells 11:131. - »Bioblast link«


CHM333 LECTURES CORRECTION.png
xx CHM333 LECTURES 37 & 38: 4/27 – 29/13 SPRING 2013 Professor Christine Hrycyna


(retrieved 2023-03-21 to 2023-05-02)
Website 49: Conduct Science: "In Complex II, the enzyme succinate dehydrogenase in the inner mitochondrial membrane reduce FADH2 to FAD+. Simultaneously, succinate, an intermediate in the Krebs cycle, is oxidized to fumarate." - Comments: FAD does not have a postive charge. FADH2 is the reduced form, it is not reduced. And again: In CII, FAD is reduced to FADH2.
Website 50: The Medical Biochemistry Page: ‘In addition to transferring electrons from the FADH2 generated by SDH, complex II also accepts electrons from the FADH2 generated during fatty acid oxidation via the fatty acyl-CoA dehydrogenases and from mitochondrial glycerol-3-phosphate dehydrogenase (GPD2) of the glycerol phosphate shuttle’ (Figure 8d).
Website 51: CHM333 LECTURES 37 & 38: 4/27 – 29/13 SPRING 2013 Professor Christine Hrycyna: Acyl-CoA dehydrogenase is listed under 'Electron transfer in Complex II'.


From CGpDH and other pathways to FADH2 to CII?

Blanco 2017 Academic Press CORRECTION.png /// Willson 2022 Blood CORRECTION.png /// Rai 2022 G3 (Bethesda) CORRECTION.png /// Koopman 2016 Nat Protoc CORRECTION.png

Comment (Cardoso Luiza, Gnaiger Erich, 2023-08-06):

Fig. 9.19 from Blanco, Blanco (2017), Fig. 1 from Willson et al (2022), and Fig. 1 from Rai et al (2022) show FADH2 (1) to be formed in the mitochondrial matrix from GPDH, GPD2, or GPO1 (all indicating CGpDH) and from the TCA cycle (Fig. 1 Rai et al (2022)), then (2) feeding electrons further 'To respiratory chain', the 'ETC', or 'Electron Transport Chain' (ETS). Combined with FADH2 shown (1) to be formed in the mt-matrix from the TCA cycle and (2) feeding into CII (Fig. 1 from Koopman et al (2016); among >120 examples discussed as CII-ambiguities), one may arrive at the erroneous conclusion on a direct role of CII in the oxidation of glycerophosphate, analogous to false representations of CII involved in fatty acid oxidation.

Blanco 2017 Academic Press CORRECTION.png
xx Blanco A, Blanco G (2017) Chapter 9 - Biological oxidations: bioenergetics. In Blanco A, Blanco G, eds, Medical biochemistry. Academic Press:177-204. - »Bioblast link«


Covarrubias 2021 Nat Rev Mol Cell Biol CORRECTION.png
xx Covarrubias AJ, Perrone R, Grozio A, Verdin E (2021) NAD+ metabolism and its roles in cellular processes during ageing. Nat Rev Mol Cell Biol 22:119-41. - »Bioblast link«


Hashimoto 2006 Am J Physiol Endocrinol Metab CORRECTION.png
xx Hashimoto T, Hussien R, Brooks GA (2006) Colocalization of MCT1, CD147, and LDH in mitochondrial inner membrane of L6 muscle cells: evidence of a mitochondrial lactate oxidation complex. Am J Physiol Endocrinol Metab 290:E1237-44. - »Bioblast link«


LaMoia 2022 Proc Natl Acad Sci U S A CORRECTION.png
xx LaMoia TE, Butrico GM, Kalpage HA, Goedeke L, Hubbard BT, Vatner DF, Gaspar RC, Zhang XM, Cline GW, Nakahara K, Woo S, Shimada A, Hüttemann M, Shulman GI (2022) Metformin, phenformin, and galegine inhibit complex IV activity and reduce glycerol-derived gluconeogenesis. Proc Natl Acad Sci U S A 119:e2122287119. - »Bioblast link«


Lautrup 2019 Cell Metab CORRECTION.png
xx Lautrup S, Sinclair DA, Mattson MP, Fang EF (2019) NAD+ in brain aging and neurodegenerative disorders. Cell Metab 30:630-55. - »Bioblast link«


Willson 2022 Blood CORRECTION.png
xx Willson JA, Arienti S, Sadiku P, Reyes L, Coelho P, Morrison T, Rinaldi G, Dockrell DH, Whyte MKB, Walmsley SR (2022) Neutrophil HIF-1α stabilization is augmented by mitochondrial ROS produced via the glycerol 3-phosphate shuttle. Blood 139:281-6. - »Bioblast link«


Xiao 2018 Antioxid Redox Signal CORRECTION.png
xx Xiao W, Wang RS, Handy DE, Loscalzo J (2018) NAD(H) and NADP(H) redox couples and cellular energy metabolism. Antioxid Redox Signal 28:251–72. - »Bioblast link«


Cogliati 2021 Biochem Soc Trans CORRECTION.png
xx Cogliati S, Cabrera-Alarcón JL, Enriquez JA (2021) Regulation and functional role of the electron transport chain supercomplexes. Biochem Soc Trans 49:2655-68. - »Bioblast link«


Mosegaard 2020 Int J Mol Sci CORRECTION.png
xx Mosegaard S, Dipace G, Bross P, Carlsen J, Gregersen N, Olsen RKJ (2020) Riboflavin deficiency-implications for general human health and inborn errors of metabolism. Int J Mol Sci 21:3847. - »Bioblast link«



CII as a H+ pump

Cronshaw 2019 Photobiomodul Photomed Laser Surg CORRECTION.png
xx Cronshaw M, Parker S, Arany P (2019) Feeling the heat: evolutionary and microbial basis for the analgesic mechanisms of photobiomodulation therapy. Photobiomodul Photomed Laser Surg 37:517-26. - »Bioblast link«


Dumollard 2007 Development CORRECTION.png
xx Dumollard R, Ward Z, Carroll J, Duchen MR (2007) Regulation of redox metabolism in the mouse oocyte and embryo. Development 134:455-65. - »Bioblast link«


Jian 2020 Cell Metab CORRECTION.png
xx Jian C, Fu J, Cheng X, Shen LJ, Ji YX, Wang X, Pan S, Tian H, Tian S, Liao R, Song K, Wang HP, Zhang X, Wang Y, Huang Z, She ZG, Zhang XJ, Zhu L, Li H (2020) Low-dose sorafenib acts as a mitochondrial uncoupler and ameliorates nonalcoholic steatohepatitis. Cell Metab 31:892-908. - »Bioblast link«
While CI functions as a proton pump, CII does not. Depicting CII as a proton pump would be analogous to falsely portraying FADH2 as the substrate of CII, as if it were a copy of CI, which functions as a proton pump with NADH as its substrate.


Shirakawa 2023 Sci Rep CORRECTION.png
xx Shirakawa R, Nakajima T, Yoshimura A, Kawahara Y, Orito C, Yamane M, Handa H, Takada S, Furihata T, Fukushima A, Ishimori N, Nakagawa M, Yokota I, Sabe H, Hashino S, Kinugawa S, Yokota T (2023) Enhanced mitochondrial oxidative metabolism in peripheral blood mononuclear cells is associated with fatty liver in obese young adults. Sci Rep 13:5203. - »Bioblast link«
While CI functions as a proton pump, CII does not. Depicting CII as a proton pump would be analogous to falsely portraying FADH2 as the substrate of CII, as if it were a copy of CI, which functions as a proton pump with NADH as its substrate.


Xing 2022 Atlantis Press CORRECTION.png
xx Xing Yunxie (2022) Is genome instability a significant cause of aging? A review. Atlantis Press. - »Bioblast link«


Expii-Gabi Slizewska CORRECTION.png
xx: expii expii - Image source: By Gabi Slizewska: ‘FADH2 from glycolysis and Krebs cycle is oxidized to FAD by Complex II. It also releases H+ ions into the intermembrane space and passes off electrons’ (retrieved 2023-05-04).
BioNinja 1 CORRECTION.png
BioNinja 2 CORRECTION.png
xx: BioNinja (retrieved 2023-05-04).

Beyond preprint

Grandoch 2019 Nat Metab CORRECTION.png
xx Grandoch M, Flögel U, Virtue S, Maier JK, Jelenik T, Kohlmorgen C, Feldmann K, Ostendorf Y, Castañeda TR, Zhou Z, Yamaguchi Y, Nascimento EBM, Sunkari VG, Goy C, Kinzig M, Sörgel F, Bollyky PL, Schrauwen P, Al-Hasani H, Roden M, Keipert S, Vidal-Puig A, Jastroch M5, Haendeler J, Fischer JW (2019) 4-Methylumbelliferone improves the thermogenic capacity of brown adipose tissue. Nat Metab 1:546-59. - »Bioblast link«
NADH is shown as the product of the reaction catalyzed by CI in respiration. This error is rare in the literature, but comparable to the error frequenty encountered when FADH2 is shown as the substrate of CII.


Lancaster 2002 Biochim Biophys Acta.png Lancaster 2001 FEBS Lett CORRECTION.png
xx Lancaster CR (2002) Succinate:quinone oxidoreductases: an overview. Biochim Biophys Acta 1553:1-6. - »Bioblast link«
fumarate + 2H+ shown besides NADH + H+ is ambiguous.
xx Lancaster CR (2001) Succinate:quinone oxidoreductases--what can we learn from Wolinella succinogenes quinol:fumarate reductase?. FEBS Lett 504:133-41. - »Bioblast link«



Questions.jpg


Click to expand or collaps
Bioblast links: Substrates and cofactors - >>>>>>> - Click on [Expand] or [Collapse] - >>>>>>>
Substrate
» Substrate
» Product
» Substrates as electron donors
» Cellular substrates
» MitoPedia: Substrates and metabolites
» Substrate-uncoupler-inhibitor titration
Cofactor
» Cofactor
» Coenzyme, cosubstrate
» Nicotinamide adenine dinucleotide
» Coenzyme Q2
» Prosthetic group
» Flavin adenine dinucleotide
Referennces
» Gnaiger E (2023) Complex II ambiguities ― FADH2 in the electron transfer system. MitoFit Preprints 2023.3.v6. https://doi.org/10.26124/mitofit:2023-0003.v6


Labels:



Enzyme: Complex II;succinate dehydrogenase 



Ambiguity crisis, FAT4BRAIN, Publication:FAT4BRAIN